Quantization of non-Abelian gauge fields
Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 304-308.

Voir la notice de l'article provenant de la source Math-Net.Ru

A quantization procedure of non-Abelian gauge theories is considered. It is shown that the standard quantization procedure is applicable only within perturbation theory with respect to the coupling constant. A new quantization method is proposed that can be applied both within and outside perturbation theory.
@article{TRSPY_2015_289_a15,
     author = {A. A. Slavnov},
     title = {Quantization of {non-Abelian} gauge fields},
     journal = {Informatics and Automation},
     pages = {304--308},
     publisher = {mathdoc},
     volume = {289},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a15/}
}
TY  - JOUR
AU  - A. A. Slavnov
TI  - Quantization of non-Abelian gauge fields
JO  - Informatics and Automation
PY  - 2015
SP  - 304
EP  - 308
VL  - 289
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a15/
LA  - ru
ID  - TRSPY_2015_289_a15
ER  - 
%0 Journal Article
%A A. A. Slavnov
%T Quantization of non-Abelian gauge fields
%J Informatics and Automation
%D 2015
%P 304-308
%V 289
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a15/
%G ru
%F TRSPY_2015_289_a15
A. A. Slavnov. Quantization of non-Abelian gauge fields. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 304-308. http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a15/

[1] Higgs P. W., “Broken symmetries and the masses of gauge bosons”, Phys. Rev. Lett., 13 (1964), 508–509 | DOI | MR

[2] Englert F., Brout R., “Broken symmetry and the mass of gauge vector mesons”, Phys. Rev. Lett., 13 (1964), 321–323 | DOI | MR

[3] Faddeev L. D., Popov V. N., “Feynman diagrams for the Yang–Mills field”, Phys. Lett. B, 25 (1967), 29–30 | DOI

[4] De Witt B. S., “Quantum theory of gravity. I: The canonical theory”, Phys. Rev., 160 (1967), 1113–1148 | DOI

[5] Gribov V. N., “Quantization of non-Abelian gauge theories”, Nucl. Phys. B, 139 (1978), 1–19 | DOI | MR

[6] Singer I. M., “Some remarks on the Gribov ambiguity”, Commun. Math. Phys., 60 (1978), 7–12 | DOI | MR | Zbl

[7] Slavnov A. A., “Lorents-invariantnoe kvantovanie teorii Yanga–Millsa bez neodnoznachnosti Gribova”, TMF, 161:2 (2009), 204–211 | DOI | MR | Zbl

[8] Quadri A., Slavnov A. A., “Renormalization of the Yang–Mills theory in the ambiguity-free gauge”, J. High Energy Phys., 2010, no. 7, Pap. 087 | MR

[9] Slavnov A. A., “Teoriya Yanga–Millsa kak bezmassovyi predel massivnoi kalibrovochno-invariantnoi modeli”, TMF, 175:1 (2013), 3–10 | DOI | MR | Zbl