Quantization of non-Abelian gauge fields
Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 304-308

Voir la notice de l'article provenant de la source Math-Net.Ru

A quantization procedure of non-Abelian gauge theories is considered. It is shown that the standard quantization procedure is applicable only within perturbation theory with respect to the coupling constant. A new quantization method is proposed that can be applied both within and outside perturbation theory.
@article{TRSPY_2015_289_a15,
     author = {A. A. Slavnov},
     title = {Quantization of {non-Abelian} gauge fields},
     journal = {Informatics and Automation},
     pages = {304--308},
     publisher = {mathdoc},
     volume = {289},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a15/}
}
TY  - JOUR
AU  - A. A. Slavnov
TI  - Quantization of non-Abelian gauge fields
JO  - Informatics and Automation
PY  - 2015
SP  - 304
EP  - 308
VL  - 289
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a15/
LA  - ru
ID  - TRSPY_2015_289_a15
ER  - 
%0 Journal Article
%A A. A. Slavnov
%T Quantization of non-Abelian gauge fields
%J Informatics and Automation
%D 2015
%P 304-308
%V 289
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a15/
%G ru
%F TRSPY_2015_289_a15
A. A. Slavnov. Quantization of non-Abelian gauge fields. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 304-308. http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a15/