Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_289_a15, author = {A. A. Slavnov}, title = {Quantization of {non-Abelian} gauge fields}, journal = {Informatics and Automation}, pages = {304--308}, publisher = {mathdoc}, volume = {289}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a15/} }
A. A. Slavnov. Quantization of non-Abelian gauge fields. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 304-308. http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a15/
[1] Higgs P. W., “Broken symmetries and the masses of gauge bosons”, Phys. Rev. Lett., 13 (1964), 508–509 | DOI | MR
[2] Englert F., Brout R., “Broken symmetry and the mass of gauge vector mesons”, Phys. Rev. Lett., 13 (1964), 321–323 | DOI | MR
[3] Faddeev L. D., Popov V. N., “Feynman diagrams for the Yang–Mills field”, Phys. Lett. B, 25 (1967), 29–30 | DOI
[4] De Witt B. S., “Quantum theory of gravity. I: The canonical theory”, Phys. Rev., 160 (1967), 1113–1148 | DOI
[5] Gribov V. N., “Quantization of non-Abelian gauge theories”, Nucl. Phys. B, 139 (1978), 1–19 | DOI | MR
[6] Singer I. M., “Some remarks on the Gribov ambiguity”, Commun. Math. Phys., 60 (1978), 7–12 | DOI | MR | Zbl
[7] Slavnov A. A., “Lorents-invariantnoe kvantovanie teorii Yanga–Millsa bez neodnoznachnosti Gribova”, TMF, 161:2 (2009), 204–211 | DOI | MR | Zbl
[8] Quadri A., Slavnov A. A., “Renormalization of the Yang–Mills theory in the ambiguity-free gauge”, J. High Energy Phys., 2010, no. 7, Pap. 087 | MR
[9] Slavnov A. A., “Teoriya Yanga–Millsa kak bezmassovyi predel massivnoi kalibrovochno-invariantnoi modeli”, TMF, 175:1 (2013), 3–10 | DOI | MR | Zbl