Finite subgroups of diffeomorphism groups
Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 235-241

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the following: (1) the existence, for every integer $n\geq 4$, of a noncompact smooth $n$-dimensional topological manifold whose diffeomorphism group contains an isomorphic copy of every finitely presented group; (2) a finiteness theorem for finite simple subgroups of diffeomorphism groups of compact smooth topological manifolds.
@article{TRSPY_2015_289_a13,
     author = {V. L. Popov},
     title = {Finite subgroups of diffeomorphism groups},
     journal = {Informatics and Automation},
     pages = {235--241},
     publisher = {mathdoc},
     volume = {289},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a13/}
}
TY  - JOUR
AU  - V. L. Popov
TI  - Finite subgroups of diffeomorphism groups
JO  - Informatics and Automation
PY  - 2015
SP  - 235
EP  - 241
VL  - 289
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a13/
LA  - ru
ID  - TRSPY_2015_289_a13
ER  - 
%0 Journal Article
%A V. L. Popov
%T Finite subgroups of diffeomorphism groups
%J Informatics and Automation
%D 2015
%P 235-241
%V 289
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a13/
%G ru
%F TRSPY_2015_289_a13
V. L. Popov. Finite subgroups of diffeomorphism groups. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 235-241. http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a13/