Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_289_a13, author = {V. L. Popov}, title = {Finite subgroups of diffeomorphism groups}, journal = {Informatics and Automation}, pages = {235--241}, publisher = {mathdoc}, volume = {289}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a13/} }
V. L. Popov. Finite subgroups of diffeomorphism groups. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 235-241. http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a13/
[1] Anderson R. D., “Zero-dimensional compact groups of homeomorphisms”, Pac. J. Math., 7 (1957), 797–810 | DOI | MR | Zbl
[2] Bandman T., Zarhin Yu. G., “Jordan groups and algebraic surfaces”, Transform. Groups, 20:2 (2015), 327–334 | DOI | MR
[3] Barry M. J. J., “Large Abelian subgroups of Chevalley groups”, J. Aust. Math. Soc. A, 27:1 (1979), 59–87 | DOI | MR | Zbl
[4] Cannon J. W., Floyd W. J., Parry W. R., “Introductory notes on Richard Thompson's groups”, Enseign. Math. Sér. II, 42:3–4 (1996), 215–256 | MR | Zbl
[5] Collins D. J., Zieschang H., “Combinatorial group theory and fundamental groups”, Algebra, v. VII, Encycl. Math. Sci., 58, Combinatorial group theory. Applications to geometry, Springer, Berlin, 1993, 1–166 | MR
[6] Csikós B., Pyber L., Szabó E., Diffeomorphism groups of compact 4-manifolds are not always Jordan, E-print, 2014, arXiv: 1411.7524[math.DG]
[7] Higman G., “Subgroups of finitely presented groups”, Proc. R. Soc. London A, 262 (1961), 455–475 | DOI | MR | Zbl
[8] Higman G., Neumann B. H., Neumann H., “Embedding theorems for groups”, J. London Math. Soc., 24 (1949), 247–254 | DOI | MR
[9] Kwasik S., Schultz R., Finite symmetries of $\mathbb R^4$ and $S^4$, Preprint, Univ. California, Riverside, CA, 2012
[10] Mann L. N., Su J. C., “Actions of elementary $p$-groups on manifolds”, Trans. Amer. Math. Soc., 106 (1963), 115–126 | MR | Zbl
[11] Massey W. S., Algebraic topology: An introduction, Grad. Texts Math., 56, Springer, New York, 1977 | MR | Zbl
[12] Mundet i Riera I., “Jordan's theorem for the diffeomorphism group of some manifolds”, Proc. Amer. Math. Soc., 138:6 (2010), 2253–2262 | DOI | MR | Zbl
[13] Mundet i Riera I., Finite group actions on manifolds without odd cohomology, E-print, 2013, arXiv: 1310.6565v2[math.DG]
[14] Mundet i Riera I., Finite group actions on homology spheres and manifolds with nonzero Euler characteristic, E-print, 2014, arXiv: 1403.0383v2[math.DG]
[15] Meeks III W. H., Yau S.-T., “Group actions on $\mathbb R^3$”, The Smith conjecture, Pure Appl. Math., 112, Acad. Press, Orlando, FL, 1984, 167–180 | MR
[16] Popov V. L., “On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties”, Affine algebraic geometry, The Russell Festschrift, CRM Proc. Lect. Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 289–311 | MR | Zbl
[17] Popov V. L., “Jordan groups and automorphism groups of algebraic varieties”, Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 185–213; arXiv: 1307.5522v4[math.AG]
[18] Rotman J. J., An introduction to the theory of groups, Grad. Texts Math., 148, 4th ed., Springer, New York, 1995 | MR | Zbl
[19] Tits J., “Le problème des mots dans les groupes de Coxeter”, Symposia mathematica, v. 1, Convegni del Dicembre del 1967 e dell'Aprile del 1968, Acad. Press, London, 1969, 175–185 | MR
[20] Vdovin E. P., “Bolshie abelevy unipotentnye podgruppy konechnykh grupp Shevalle”, Algebra i logika, 40:5 (2001), 523–544 | MR | Zbl
[21] Wilson R. A., The finite simple groups, Grad. Texts Math., 251, Springer, London, 2009 | MR | Zbl
[22] Wong W. J., “Abelian unipotent subgroups of finite unitary and symplectic groups”, J. Aust. Math. Soc. A, 33:3 (1982), 331–344 | DOI | MR | Zbl