Density bounds for outer parallel domains of unit ball packings
Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 230-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give upper bounds for the density of unit ball packings relative to their outer parallel domains and discuss their connection to contact numbers. We also introduce packings of soft balls and give upper bounds for the fraction of space covered by them.
@article{TRSPY_2015_288_a15,
     author = {K\'aroly Bezdek and Zsolt L\'angi},
     title = {Density bounds for outer parallel domains of unit ball packings},
     journal = {Informatics and Automation},
     pages = {230--247},
     publisher = {mathdoc},
     volume = {288},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a15/}
}
TY  - JOUR
AU  - Károly Bezdek
AU  - Zsolt Lángi
TI  - Density bounds for outer parallel domains of unit ball packings
JO  - Informatics and Automation
PY  - 2015
SP  - 230
EP  - 247
VL  - 288
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a15/
LA  - en
ID  - TRSPY_2015_288_a15
ER  - 
%0 Journal Article
%A Károly Bezdek
%A Zsolt Lángi
%T Density bounds for outer parallel domains of unit ball packings
%J Informatics and Automation
%D 2015
%P 230-247
%V 288
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a15/
%G en
%F TRSPY_2015_288_a15
Károly Bezdek; Zsolt Lángi. Density bounds for outer parallel domains of unit ball packings. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 230-247. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a15/

[1] Baranovskii E.P., “O zapolnenii $n$-mernykh evklidovykh prostranstv ravnymi sharami. I”, Izv. vuzov. Matematika, 1964, no. 2, 14–24 | MR

[2] Bezdek K., “On a stronger form of Rogers' lemma and the minimum surface area of Voronoi cells in unit ball packings”, J. reine angew. Math., 518 (2000), 131–143 | MR | Zbl

[3] Bezdek K., “Improving Rogers' upper bound for the density of unit ball packings via estimating the surface area of Voronoi cells from below in Euclidean $d$-space for all $d\ge 8$”, Discrete Comput. Geom., 28:1 (2002), 75–106 | DOI | MR | Zbl

[4] Bezdek K., “On the maximum number of touching pairs in a finite packing of translates of a convex body”, J. Comb. Theory A., 98 (2002), 192–200 | DOI | MR | Zbl

[5] Bezdek K., “Contact numbers for congruent sphere packings in Euclidean 3-space”, Discrete Comput. Geom., 48:2 (2012), 298–309 | DOI | MR | Zbl

[6] Bezdek K., Lectures on sphere arrangements—the discrete geometric side, Springer, New York, 2013 | MR | Zbl

[7] Bezdek K., Reid S., “Contact graphs of unit sphere packings revisited”, J. Geom., 104:1 (2013), 57–83 | DOI | MR | Zbl

[8] Blichfeldt H.F., “The minimum value of quadratic forms, and the closest packing of spheres”, Math. Ann., 101 (1929), 605–608 | DOI | MR | Zbl

[9] Böröczky K., “Packing of spheres in spaces of constant curvature”, Acta math. Acad. sci. Hung., 32 (1978), 243–261 | DOI | MR | Zbl

[10] Böröczky K., “Closest packing and loosest covering of the space with balls”, Stud. sci. math. Hung., 21 (1986), 79–89 | MR | Zbl

[11] Capoyleas V., Pach J., “On the perimeter of a point set in the plane”, Discrete and computational geometry, Papers from the DIMACS special year, DIMACS Ser. Discrete Math. Theor. Comput. Sci., 6, Amer. Math. Soc., Providence, RI, 1991, 67–76 | MR

[12] Cohn H., Kumar A., “Universally optimal distribution of points on spheres”, J. Amer. Math. Soc., 20:1 (2007), 99–148 | DOI | MR | Zbl

[13] Cohn H., Zhao Y., “Sphere packing bounds via spherical codes”, Duke Math. J., 163:10 (2014), 1965–2002 | DOI | MR | Zbl

[14] Fejes Tóth G., Kuperberg W., “Blichfeldt's density bound revisited”, Math. Ann., 295:4 (1993), 721–727 | MR | Zbl

[15] Fejes Tóth L., “Perfect distribution of points on a sphere”, Period. math. Hung., 1:1 (1971), 25–33 | DOI | MR | Zbl

[16] Fejes Tóth L., Lagerungen in der Ebene, auf der Kugel und im Raum, 2. Aufl., Springer, Berlin, 1972 | MR | Zbl

[17] Gorbovickis I., “Strict Kneser–Poulsen conjecture for large radii”, Geom. dedicata, 162 (2013), 95–107 | DOI | MR | Zbl

[18] Groemer H., “Über die Einlagerung von Kreisen in einen konvexen Bereich”, Math. Z., 73 (1960), 285–294 | DOI | MR | Zbl

[19] Hales T.C., Dense sphere packings: A blueprint for formal proofs, Cambridge Univ. Press, Cambridge, 2012 | MR | Zbl

[20] Hales T.C., McLaughlin S., “The dodecahedral conjecture”, J. Amer. Math. Soc., 23:2 (2010), 299–344 | DOI | MR | Zbl

[21] Kuperberg G., “Notions of denseness”, Geom. Topol., 4 (2000), 277–292 | DOI | MR | Zbl

[22] Molnár J., “Kreislagerungen auf Flächen konstanter Krümmung”, Math. Ann., 158:5 (1965), 365–376 | DOI | MR

[23] Muder D.J., “A new bound on the local density of sphere packings”, Discrete Comput. Geom., 10:4 (1993), 351–375 | DOI | MR | Zbl

[24] Rogers C.A., “The packing of equal spheres”, J. London Math. Soc. Ser. 3, 8 (1958), 609–620 | DOI | MR | Zbl

[25] Rogers C.A., Packing and covering, Cambridge Univ. Press, Cambridge, 1964 | MR | Zbl

[26] Schürmann A., “On extremal finite packings”, Discrete Comput. Geom., 28:3 (2002), 389–403 | DOI | MR | Zbl

[27] Swanepoel K.J., “Simultaneous packing and covering in sequence spaces”, Discrete Comput. Geom., 42:2 (2009), 335–340 | DOI | MR | Zbl

[28] Wills J.M., “Finite packings and parametric density”, Statistical physics and spatial statistics, Lect. Notes Phys., 554, Springer, Berlin, 2000, 332–348 | DOI | MR