On a~higher dimensional generalization of Seifert fibrations
Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 163-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of generalized Seifert fibration is introduced; it is shown that the projections of certain Eschenburg $7$-manifolds $W^7_{\bar n}$ onto $\mathbb C\mathrm P^2$ define such fibrations; and their characteristic classes corresponding to the generators of $H^2(B(\mathrm U(2)/\mathbb Z_{2n});\mathbb Z)$ are defined.
@article{TRSPY_2015_288_a10,
     author = {I. A. Taimanov},
     title = {On a~higher dimensional generalization of {Seifert} fibrations},
     journal = {Informatics and Automation},
     pages = {163--170},
     publisher = {mathdoc},
     volume = {288},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a10/}
}
TY  - JOUR
AU  - I. A. Taimanov
TI  - On a~higher dimensional generalization of Seifert fibrations
JO  - Informatics and Automation
PY  - 2015
SP  - 163
EP  - 170
VL  - 288
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a10/
LA  - ru
ID  - TRSPY_2015_288_a10
ER  - 
%0 Journal Article
%A I. A. Taimanov
%T On a~higher dimensional generalization of Seifert fibrations
%J Informatics and Automation
%D 2015
%P 163-170
%V 288
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a10/
%G ru
%F TRSPY_2015_288_a10
I. A. Taimanov. On a~higher dimensional generalization of Seifert fibrations. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 163-170. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a10/

[1] Taimanov I.A., “O vpolne geodezicheskikh vlozheniyakh 7-mernykh mnogoobrazii v 13-mernye mnogoobraziya polozhitelnoi sektsionnoi krivizny”, Mat. sb., 187:12 (1996), 121–136 | DOI | MR | Zbl

[2] Eschenburg J.-H., “New examples of manifolds with strictly positive curvature”, Invent. math., 66 (1982), 469–480 | DOI | MR | Zbl

[3] Seifert H., “Topologie dreidimensionaler gefaserter Raüme”, Acta math., 60 (1933), 147–238 | DOI | MR

[4] Scott P., “The geometries of 3-manifolds”, Bull. London Math. Soc., 15 (1983), 401–487 | DOI | MR | Zbl

[5] Püttmann T., “Optimal pinching constants of odd dimensional homogeneous spaces”, Invent. math., 138 (1999), 631–684 | DOI | MR | Zbl

[6] Dearricott O., Eschenburg J.-H., “Totally geodesic embeddings of 7-manifolds in positively curved 13-manifolds”, Manuscr. math., 114:4 (2004), 447–456 | DOI | MR | Zbl

[7] Kerin M., “A note on totally geodesic embeddings of Eschenburg spaces into Bazaikin spaces”, Ann. Global Anal. Geom., 43:1 (2013), 63–73 | DOI | MR | Zbl

[8] Florit L.A., Ziller W., “Orbifold fibrations of Eschenburg spaces”, Geom. dedicata, 127 (2007), 159–175 | DOI | MR | Zbl

[9] Russkikh N.E., “O semimernykh obobschennykh rassloeniyakh Zeiferta nad kompleksnoi proektivnoi ploskostyu”, Sib. elektron. mat. izv., 11 (2014), 966–974

[10] Holmann H., “Seifertsche Faserräume”, Math. Ann., 157 (1964), 138–166 | DOI | MR | Zbl

[11] Orlik P., Seifert manifolds, Lect. Notes Math., 291, Springer, Berlin, 1972 | MR | Zbl