On the volume of a~hyperbolic octahedron with $\overline3$-symmetry
Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 7-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider hyperbolic octahedra with $\overline3$-symmetry. For these octahedra, we find existence conditions, establish relations between the edge lengths and dihedral angles, and obtain exact formulas for the volumes.
@article{TRSPY_2015_288_a0,
     author = {N. V. Abrosimov and E. S. Kudina and A. D. Mednykh},
     title = {On the volume of a~hyperbolic octahedron with $\overline3$-symmetry},
     journal = {Informatics and Automation},
     pages = {7--15},
     publisher = {mathdoc},
     volume = {288},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a0/}
}
TY  - JOUR
AU  - N. V. Abrosimov
AU  - E. S. Kudina
AU  - A. D. Mednykh
TI  - On the volume of a~hyperbolic octahedron with $\overline3$-symmetry
JO  - Informatics and Automation
PY  - 2015
SP  - 7
EP  - 15
VL  - 288
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a0/
LA  - ru
ID  - TRSPY_2015_288_a0
ER  - 
%0 Journal Article
%A N. V. Abrosimov
%A E. S. Kudina
%A A. D. Mednykh
%T On the volume of a~hyperbolic octahedron with $\overline3$-symmetry
%J Informatics and Automation
%D 2015
%P 7-15
%V 288
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a0/
%G ru
%F TRSPY_2015_288_a0
N. V. Abrosimov; E. S. Kudina; A. D. Mednykh. On the volume of a~hyperbolic octahedron with $\overline3$-symmetry. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 7-15. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a0/

[1] Lobachevskii N.I., “Voobrazhaemaya geometriya”, Uchen. zap. Imper. Kazan. un-ta, Kn. I, 1835, 3–88

[2] János Bolyai. Appendix: The theory of space, eds. F. Kárteszi, Akad. Kiadó, Budapest, 1987 | MR

[3] Schläfli L., “Theorie der vielfachen Kontinuität”, Gesammelte mathematische Abhandlungen, Bd. 1, Birkhäuser, Basel, 1950, 167–387 | DOI

[4] Kellerhals R., “On the volume of hyperbolic polyhedra”, Math. Ann., 285 (1989), 541–569 | DOI | MR | Zbl

[5] Derevnin D.A., Mednykh A.D., “Ob'em kuba Lamberta v sfericheskom prostranstve”, Mat. zametki, 86:2 (2009), 190–201 | DOI | MR | Zbl

[6] Mednykh A.D., Parker J.R., Vesnin A.Yu., “On hyperbolic polyhedra arising as convex cores of quasi-Fuchsian punctured torus groups”, Bol. Soc. Mat. Mex. Ser. III, 10, Spec. Iss. (2004), 357–381 | MR | Zbl

[7] Vinberg E.B., “Ob'emy neevklidovykh mnogogrannikov”, UMN, 48:2 (1993), 17–46 | MR | Zbl

[8] Alekseevskii D.V., Vinberg E.B., Solodovnikov A.S., “Geometriya prostranstv postoyannoi krivizny”, Geometriya–2, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 29, VINITI, M., 1988, 5–146

[9] Sforza G., “Ricerche di estensionimetria differenziale negli spazi metrico-projettivi”, Modena Mem. Acc. Ser. III, 8, Appendix (1906), 21–66

[10] Abrosimov N., Mednykh A., “Volumes of polytopes in spaces of constant curvature”, Rigidity and symmetry, Fields Inst. Commun., 70, Springer, New York, 2014, 1–26, arXiv: 1302.4919 [math.MG] | DOI

[11] Derevnin D.A., Mednykh A.D., Pashkevich M.G., “Ob'em simmetrichnogo tetraedra v giperbolicheskom i sfericheskom prostranstvakh”, Sib. mat. zhurn., 45:5 (2004), 1022–1031 | MR | Zbl

[12] Abrosimov N.V., Godoy-Molina M., Mednykh A.D., “On the volume of a spherical octahedron with symmetries”, J. Math. Sci., 161:1 (2009), 1–10 | DOI | MR | Zbl

[13] Abrosimov N.V., Baigonakova G.A., “Giperbolicheskii oktaedr s $mmm$-simmetriei”, Sib. elektron. mat. izv., 10 (2013), 123–140 | MR

[14] Galiulin R.V., Mikhalëv S.N., Sabitov I.Kh., “Nekotorye prilozheniya formuly dlya ob'ema oktaedra”, Mat. zametki, 76:1 (2004), 27–43 | DOI | MR | Zbl

[15] Conway J.H., Burgiel H., Goodman-Strass Ch., The symmetries of things, A K Peters, Wellesley, MA, 2008 | MR | Zbl

[16] Johnson N.W., Geometries and transformations. Ch. 11: Finite symmetry groups, Manuscript, 2011