Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_288_a0, author = {N. V. Abrosimov and E. S. Kudina and A. D. Mednykh}, title = {On the volume of a~hyperbolic octahedron with $\overline3$-symmetry}, journal = {Informatics and Automation}, pages = {7--15}, publisher = {mathdoc}, volume = {288}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a0/} }
TY - JOUR AU - N. V. Abrosimov AU - E. S. Kudina AU - A. D. Mednykh TI - On the volume of a~hyperbolic octahedron with $\overline3$-symmetry JO - Informatics and Automation PY - 2015 SP - 7 EP - 15 VL - 288 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a0/ LA - ru ID - TRSPY_2015_288_a0 ER -
N. V. Abrosimov; E. S. Kudina; A. D. Mednykh. On the volume of a~hyperbolic octahedron with $\overline3$-symmetry. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 7-15. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a0/
[1] Lobachevskii N.I., “Voobrazhaemaya geometriya”, Uchen. zap. Imper. Kazan. un-ta, Kn. I, 1835, 3–88
[2] János Bolyai. Appendix: The theory of space, eds. F. Kárteszi, Akad. Kiadó, Budapest, 1987 | MR
[3] Schläfli L., “Theorie der vielfachen Kontinuität”, Gesammelte mathematische Abhandlungen, Bd. 1, Birkhäuser, Basel, 1950, 167–387 | DOI
[4] Kellerhals R., “On the volume of hyperbolic polyhedra”, Math. Ann., 285 (1989), 541–569 | DOI | MR | Zbl
[5] Derevnin D.A., Mednykh A.D., “Ob'em kuba Lamberta v sfericheskom prostranstve”, Mat. zametki, 86:2 (2009), 190–201 | DOI | MR | Zbl
[6] Mednykh A.D., Parker J.R., Vesnin A.Yu., “On hyperbolic polyhedra arising as convex cores of quasi-Fuchsian punctured torus groups”, Bol. Soc. Mat. Mex. Ser. III, 10, Spec. Iss. (2004), 357–381 | MR | Zbl
[7] Vinberg E.B., “Ob'emy neevklidovykh mnogogrannikov”, UMN, 48:2 (1993), 17–46 | MR | Zbl
[8] Alekseevskii D.V., Vinberg E.B., Solodovnikov A.S., “Geometriya prostranstv postoyannoi krivizny”, Geometriya–2, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 29, VINITI, M., 1988, 5–146
[9] Sforza G., “Ricerche di estensionimetria differenziale negli spazi metrico-projettivi”, Modena Mem. Acc. Ser. III, 8, Appendix (1906), 21–66
[10] Abrosimov N., Mednykh A., “Volumes of polytopes in spaces of constant curvature”, Rigidity and symmetry, Fields Inst. Commun., 70, Springer, New York, 2014, 1–26, arXiv: 1302.4919 [math.MG] | DOI
[11] Derevnin D.A., Mednykh A.D., Pashkevich M.G., “Ob'em simmetrichnogo tetraedra v giperbolicheskom i sfericheskom prostranstvakh”, Sib. mat. zhurn., 45:5 (2004), 1022–1031 | MR | Zbl
[12] Abrosimov N.V., Godoy-Molina M., Mednykh A.D., “On the volume of a spherical octahedron with symmetries”, J. Math. Sci., 161:1 (2009), 1–10 | DOI | MR | Zbl
[13] Abrosimov N.V., Baigonakova G.A., “Giperbolicheskii oktaedr s $mmm$-simmetriei”, Sib. elektron. mat. izv., 10 (2013), 123–140 | MR
[14] Galiulin R.V., Mikhalëv S.N., Sabitov I.Kh., “Nekotorye prilozheniya formuly dlya ob'ema oktaedra”, Mat. zametki, 76:1 (2004), 27–43 | DOI | MR | Zbl
[15] Conway J.H., Burgiel H., Goodman-Strass Ch., The symmetries of things, A K Peters, Wellesley, MA, 2008 | MR | Zbl
[16] Johnson N.W., Geometries and transformations. Ch. 11: Finite symmetry groups, Manuscript, 2011