Sharp maximal inequalities for stochastic processes
Informatics and Automation, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 162-181

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is a survey of existing methods and results in the problem of estimating the mathematical expectation of the maximum of a random process up to an arbitrary Markov time. Both continuous-time (standard Brownian motion, skew Brownian motion, Bessel processes) and discrete-time (symmetric Bernoulli random walk and its modulus) processes are considered.
@article{TRSPY_2014_287_a9,
     author = {Ya. A. Lyulko and A. N. Shiryaev},
     title = {Sharp maximal inequalities for stochastic processes},
     journal = {Informatics and Automation},
     pages = {162--181},
     publisher = {mathdoc},
     volume = {287},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a9/}
}
TY  - JOUR
AU  - Ya. A. Lyulko
AU  - A. N. Shiryaev
TI  - Sharp maximal inequalities for stochastic processes
JO  - Informatics and Automation
PY  - 2014
SP  - 162
EP  - 181
VL  - 287
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a9/
LA  - ru
ID  - TRSPY_2014_287_a9
ER  - 
%0 Journal Article
%A Ya. A. Lyulko
%A A. N. Shiryaev
%T Sharp maximal inequalities for stochastic processes
%J Informatics and Automation
%D 2014
%P 162-181
%V 287
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a9/
%G ru
%F TRSPY_2014_287_a9
Ya. A. Lyulko; A. N. Shiryaev. Sharp maximal inequalities for stochastic processes. Informatics and Automation, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 162-181. http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a9/