On the submartingale/supermartingale property of diffusions in natural scale
Informatics and Automation, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 129-139

Voir la notice de l'article provenant de la source Math-Net.Ru

S. Kotani (2006) has characterised the martingale property of a one-dimensional diffusion in natural scale in terms of the classification of its boundaries. We complement this result by establishing a necessary and sufficient condition for a one-dimensional diffusion in natural scale to be a submartingale or a supermartingale. Furthermore, we study the asymptotic behaviour of the diffusion's expected state at time $t$ as $t\to\infty$. We illustrate our results by means of several examples.
@article{TRSPY_2014_287_a7,
     author = {Alexander Gushchin and Mikhail Urusov and Mihail Zervos},
     title = {On the submartingale/supermartingale property of diffusions in natural scale},
     journal = {Informatics and Automation},
     pages = {129--139},
     publisher = {mathdoc},
     volume = {287},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a7/}
}
TY  - JOUR
AU  - Alexander Gushchin
AU  - Mikhail Urusov
AU  - Mihail Zervos
TI  - On the submartingale/supermartingale property of diffusions in natural scale
JO  - Informatics and Automation
PY  - 2014
SP  - 129
EP  - 139
VL  - 287
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a7/
LA  - en
ID  - TRSPY_2014_287_a7
ER  - 
%0 Journal Article
%A Alexander Gushchin
%A Mikhail Urusov
%A Mihail Zervos
%T On the submartingale/supermartingale property of diffusions in natural scale
%J Informatics and Automation
%D 2014
%P 129-139
%V 287
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a7/
%G en
%F TRSPY_2014_287_a7
Alexander Gushchin; Mikhail Urusov; Mihail Zervos. On the submartingale/supermartingale property of diffusions in natural scale. Informatics and Automation, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 129-139. http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a7/