Multidimensional and abstract probability
Informatics and Automation, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 182-210

Voir la notice de l'article provenant de la source Math-Net.Ru

Abstract probabilities are introduced as semiring algebraic structures that retain several properties of classical probabilities taking values in the real number interval $[0,1]$. Compact probabilities and random variables with such probabilities are mainly studied. Analogs of the Borel–Cantelli lemma and of the law of large numbers are considered. New notions of superposition of probability spaces and superposition of random variables arise on the basis of the Cartesian product of abstract probabilities.
@article{TRSPY_2014_287_a10,
     author = {V. M. Maximov},
     title = {Multidimensional and abstract probability},
     journal = {Informatics and Automation},
     pages = {182--210},
     publisher = {mathdoc},
     volume = {287},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a10/}
}
TY  - JOUR
AU  - V. M. Maximov
TI  - Multidimensional and abstract probability
JO  - Informatics and Automation
PY  - 2014
SP  - 182
EP  - 210
VL  - 287
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a10/
LA  - ru
ID  - TRSPY_2014_287_a10
ER  - 
%0 Journal Article
%A V. M. Maximov
%T Multidimensional and abstract probability
%J Informatics and Automation
%D 2014
%P 182-210
%V 287
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a10/
%G ru
%F TRSPY_2014_287_a10
V. M. Maximov. Multidimensional and abstract probability. Informatics and Automation, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 182-210. http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a10/