Geometry of compact complex manifolds with maximal torus action
Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 219-230

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the geometry of compact complex manifolds $M$ equipped with a maximal action of a torus $T=(S^1)^k$. We present two equivalent constructions that allow one to build any such manifold on the basis of special combinatorial data given by a simplicial fan $\Sigma$ and a complex subgroup $H\subset T_\mathbb C=(\mathbb C^*)^k$. On every manifold $M$ we define a canonical holomorphic foliation $\mathcal F$ and, under additional restrictions on the combinatorial data, construct a transverse Kähler form $\omega _\mathcal F$. As an application of these constructions, we extend some results on the geometry of moment–angle manifolds to the case of manifolds $M$.
@article{TRSPY_2014_286_a9,
     author = {Yu. M. Ustinovsky},
     title = {Geometry of compact complex manifolds with maximal torus action},
     journal = {Informatics and Automation},
     pages = {219--230},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a9/}
}
TY  - JOUR
AU  - Yu. M. Ustinovsky
TI  - Geometry of compact complex manifolds with maximal torus action
JO  - Informatics and Automation
PY  - 2014
SP  - 219
EP  - 230
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a9/
LA  - ru
ID  - TRSPY_2014_286_a9
ER  - 
%0 Journal Article
%A Yu. M. Ustinovsky
%T Geometry of compact complex manifolds with maximal torus action
%J Informatics and Automation
%D 2014
%P 219-230
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a9/
%G ru
%F TRSPY_2014_286_a9
Yu. M. Ustinovsky. Geometry of compact complex manifolds with maximal torus action. Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 219-230. http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a9/