Geometry of compact complex manifolds with maximal torus action
Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 219-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the geometry of compact complex manifolds $M$ equipped with a maximal action of a torus $T=(S^1)^k$. We present two equivalent constructions that allow one to build any such manifold on the basis of special combinatorial data given by a simplicial fan $\Sigma$ and a complex subgroup $H\subset T_\mathbb C=(\mathbb C^*)^k$. On every manifold $M$ we define a canonical holomorphic foliation $\mathcal F$ and, under additional restrictions on the combinatorial data, construct a transverse Kähler form $\omega _\mathcal F$. As an application of these constructions, we extend some results on the geometry of moment–angle manifolds to the case of manifolds $M$.
@article{TRSPY_2014_286_a9,
     author = {Yu. M. Ustinovsky},
     title = {Geometry of compact complex manifolds with maximal torus action},
     journal = {Informatics and Automation},
     pages = {219--230},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a9/}
}
TY  - JOUR
AU  - Yu. M. Ustinovsky
TI  - Geometry of compact complex manifolds with maximal torus action
JO  - Informatics and Automation
PY  - 2014
SP  - 219
EP  - 230
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a9/
LA  - ru
ID  - TRSPY_2014_286_a9
ER  - 
%0 Journal Article
%A Yu. M. Ustinovsky
%T Geometry of compact complex manifolds with maximal torus action
%J Informatics and Automation
%D 2014
%P 219-230
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a9/
%G ru
%F TRSPY_2014_286_a9
Yu. M. Ustinovsky. Geometry of compact complex manifolds with maximal torus action. Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 219-230. http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a9/

[1] Danilov V.I., “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2 (1978), 85–134 | MR | Zbl

[2] Fulton W., Introduction to toric varieties, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[3] Cox D.A., “The homogeneous coordinate ring of a toric variety”, J. Algebr. Geom., 4 (1995), 17–50 | MR | Zbl

[4] Stanley R.P., “The number of faces of a simplicial convex polytope”, Adv. Math., 35 (1980), 236–238 | DOI | MR | Zbl

[5] Pommersheim J.E., “Toric varieties, lattice points and Dedekind sums”, Math. Ann., 295 (1993), 1–24 | DOI | MR | Zbl

[6] Leung N.C., Reiner V., “The signature of a toric variety”, Duke Math. J., 111:2 (2002), 253–286 | DOI | MR | Zbl

[7] Meersseman L., “A new geometric construction of compact complex manifolds in any dimension”, Math. Ann., 317:1 (2000), 79–115 | DOI | MR | Zbl

[8] Bosio F., Meersseman L., “Real quadrics in $\mathbb C^n$, complex manifolds and convex polytopes”, Acta math., 197:1 (2006), 53–127 | DOI | MR | Zbl

[9] Tambour J., “LVMB manifolds and simplicial spheres”, Ann. Inst. Fourier, 62:4 (2012), 1289–1317 | DOI | MR | Zbl

[10] Meersseman L., Verjovsky A., “Holomorphic principal bundles over projective toric varieties”, J. reine angew. Math., 572 (2004), 57–96 | MR | Zbl

[11] Panov T., Ustinovsky Yu., Verbitsky M., Complex geometry of moment–angle manifolds, E-print, 2013, arXiv: 1308.2818 [math.CV]

[12] Battaglia F., Zaffran D., Foliations modelling nonrational simplicial toric varieties, E-print, 2011, arXiv: 1108.1637 [math.CV] | MR

[13] Panov T., Ustinovsky Yu., “Complex-analytic structures on moment–angle manifolds”, Moscow Math. J., 12:1 (2012), 149–172 | MR | Zbl

[14] Ishida H., Complex manifolds with maximal torus actions, E-print, 2013, arXiv: 1302.0633 [math.CV] | MR

[15] Bredon G.E., Introduction to compact transformation groups, Acad. Press, New York, 1972 | MR | Zbl

[16] Delzant T., “Hamiltoniens périodiques et images convexes de l'application moment”, Bull. Soc. math. France, 116:3 (1988), 315–339 | MR | Zbl

[17] Bukhshtaber V.M., Panov T.E., Toricheskie deistviya v topologii i kombinatorike, MTsNMO, M., 2004 | MR

[18] Demailly J.-P., Complex analytic and differential geometry, E-print, 2012 http://www-fourier.ujf-grenoble.fr/demailly/documents.html