Buchstaber invariant theory of simplicial complexes and convex polytopes
Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 144-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

The survey is devoted to the theory of a combinatorial invariant of simple convex polytopes and simplicial complexes that was introduced by V. M. Buchstaber on the basis of constructions of toric topology. We describe methods for calculating this invariant and its relation to other classical and modern combinatorial invariants and constructions, calculate the invariant for special classes of polytopes and simplicial complexes, and find a criterion for this invariant to be equal to a given small number. We also describe a relation to matroid theory, which allows one to apply the results of this theory to the description of the real Buchstaber number in terms of subcomplexes of the Alexander dual simplicial complex.
@article{TRSPY_2014_286_a7,
     author = {N. Yu. Erokhovets},
     title = {Buchstaber invariant theory of simplicial complexes and convex polytopes},
     journal = {Informatics and Automation},
     pages = {144--206},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a7/}
}
TY  - JOUR
AU  - N. Yu. Erokhovets
TI  - Buchstaber invariant theory of simplicial complexes and convex polytopes
JO  - Informatics and Automation
PY  - 2014
SP  - 144
EP  - 206
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a7/
LA  - ru
ID  - TRSPY_2014_286_a7
ER  - 
%0 Journal Article
%A N. Yu. Erokhovets
%T Buchstaber invariant theory of simplicial complexes and convex polytopes
%J Informatics and Automation
%D 2014
%P 144-206
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a7/
%G ru
%F TRSPY_2014_286_a7
N. Yu. Erokhovets. Buchstaber invariant theory of simplicial complexes and convex polytopes. Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 144-206. http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a7/

[1] Aizenberg A.A., $f$-Vektory i chislo Bukhshtabera simplitsialnykh kompleksov, Dipl. rab., MGU, M., 2009

[2] Aizenberg A.A., “Svyaz invariantov Bukhshtabera i obobschennykh khromaticheskikh chisel”, Dalnevost. mat. zhurn., 11:2 (2011), 113–139 | MR

[3] Aizenberg A.A., Bukhshtaber V.M., “Nerv-kompleksy i moment–ugol-prostranstva vypuklykh mnogogrannikov”, Tr. MIAN, 275, 2011, 22–54 | MR

[4] Aleksandrov A.D., Izbrannye trudy. T. 2: Vypuklye mnogogranniki, Nauka, Novosibirsk, 2007

[5] Bukhshtaber V.M., “Koltso prostykh mnogogrannikov i differentsialnye uravneniya”, Tr. MIAN, 263, 2008, 18–43 | MR

[6] Bukhshtaber V.M., Volodin V.D., “Tochnye verkhnie i nizhnie granitsy dlya nestoedrov”, Izv. RAN. Ser. mat., 75:6 (2011), 17–46 | DOI | MR

[7] Bukhshtaber V.M., Erokhovets N.Yu., “Mnogogranniki, chisla Fibonachchi, algebry Khopfa i kvazisimmetricheskie funktsii”, UMN, 66:2 (2011), 67–162 | DOI | MR | Zbl

[8] Bukhshtaber V.M., Panov T.E., “Deistviya tora i kombinatorika mnogogrannikov”, Tr. MIAN, 225, 1999, 96–131 | MR

[9] Bukhshtaber V.M., Panov T.E., “Deistviya torov, kombinatornaya topologiya i gomologicheskaya algebra”, UMN, 55:5 (2000), 3–106 | DOI | MR

[10] Bukhshtaber V.M., Panov T.E., Toricheskie deistviya v topologii i kombinatorike, MTsNMO, M., 2004 | MR

[11] Bukhshtaber V.M., Rai N., “Toricheskie mnogoobraziya i kompleksnye kobordizmy”, UMN, 53:2 (1998), 139–140 | DOI | MR | Zbl

[12] Vinberg E.B., “Diskretnye lineinye gruppy, porozhdennye otrazheniyami”, Izv. AN SSSR. Ser. mat., 35:5 (1971), 1072–1112 | MR | Zbl

[13] Volodin V.D., “Kubicheskie realizatsii flagovykh nestoedrov i dokazatelstvo gipotezy Gala dlya nikh”, UMN, 65:1 (2010), 183–184 | DOI | MR | Zbl

[14] Gaifullin A.A., “Yavnoe postroenie mnogoobrazii, realizuyuschikh zadannye klassy gomologii”, UMN, 62:6 (2007), 167–168 | DOI | MR | Zbl

[15] Gelfand I.M., Serganova V.V., “Kombinatornye geometrii i straty tora na odnorodnykh kompaktnykh mnogoobraziyakh”, UMN, 42:2 (1987), 107–134 | MR | Zbl

[16] Emelichev V.A., Melnikov O.I., Sarvanov V.I., Tyshkevich R.I., Lektsii po teorii grafov, Librokom, M., 2009

[17] Erokhovets N.Yu., “Invariant Bukhshtabera prostykh mnogogrannikov”, UMN, 63:5 (2008), 187–188 | DOI | MR | Zbl

[18] Erokhovets N.Yu., “Gipoteza Gala dlya nestoedrov, otvechayuschikh polnym dvudolnym grafam”, Tr. MIAN, 266, 2009, 127–139 | MR | Zbl

[19] Erokhovets N.Yu., “Moment-ugol mnogoobraziya prostykh $n$-mernykh mnogogrannikov s $n+3$ gipergranyami”, UMN, 66:5 (2011), 187–188 | DOI | MR | Zbl

[20] Izmestev I.V., “Svobodnoe deistvie tora na mnogoobrazii $\mathcal Z_P$ i gruppa proektivnostei mnogogrannika $P$”, UMN, 56:3 (2001), 169–170 | DOI | MR | Zbl

[21] Izmestev I.V., “Trekhmernye mnogoobraziya, opredelyaemye raskraskoi granei prostogo mnogogrannika”, Mat. zametki, 69:3 (2001), 375–382 | DOI | MR | Zbl

[22] Iosvig M., “Gruppa proektivnostei i raskraska faset prostogo mnogogrannika”, UMN, 56:3 (2001), 171–172 | DOI | MR

[23] Novikov S.P., Dynnikov I.A., “Diskretnye spektralnye simmetrii malomernykh differentsialnykh operatorov i raznostnykh operatorov na pravilnykh reshetkakh i dvumernykh mnogoobraziyakh”, UMN, 52:5 (1997), 175–234 | DOI | MR | Zbl

[24] Ustinovskii Yu.M., “Operatsiya udvoeniya mnogogrannikov i deistviya tora”, UMN, 64:5 (2009), 181–182 | DOI | MR | Zbl

[25] Agnarsson G., “The flag polynomial of the Minkowski sum of simplices”, Ann. Comb., 17:3 (2013), 401–426, arXiv: 1006.5928 [math.CO] | DOI | MR | Zbl

[26] Ayzenberg A., The problem of Buchstaber number and its combinatorial aspects, E-print, 2010, arXiv: 1003.0637v1 [math.CO]

[27] Ayzenberg A., Composition of simplicial complexes, polytopes and multigraded Betti numbers, E-print, 2013, arXiv: 1301.4459 [math.CO]

[28] Ayzenberg A., Buchstaber numbers and classical invariants of simplicial complexes, E-print, 2014, arXiv: 1402.3663v1 [math.CO]

[29] Bahri A., Bendersky M., Cohen F.R., Gitler S., Operations on polyhedral products and a new topological construction of infinite families of toric manifolds, E-print, 2010, arXiv: 1011.0094 [math.AT] | MR

[30] Birkhoff G., “Abstract linear dependence and lattices”, Amer. J. Math., 57 (1935), 800–804 | DOI | MR

[31] Bosio F., Meersseman L., “Real quadrics in $\mathbf C^n$, complex manifolds and convex polytopes”, Acta math., 197:1 (2006), 53–127 | DOI | MR | Zbl

[32] Buchshtaber V.M., Panov T.E., Torus actions and their applications in topology and combinatorics, Amer. Math. Soc., Providence, RI, 2002 | MR

[33] Buchstaber V.M., Panov T.E., Toric topology, E-print, 2012, arXiv: 1210.2368 [math.AT] | MR

[34] Buchstaber V.M., Panov T.E., Ray N., “Spaces of polytopes and cobordism of quasitoric manifolds”, Moscow Math. J., 7:2 (2007), 219–242, arXiv: math/0609346 [math.AT] | MR | Zbl

[35] Choi S., Panov T., Suh D.Y., “Toric cohomological rigidity of simple convex polytopes”, J. London Math. Soc. Ser. 2, 82:2 (2010), 343–360, arXiv: 0807.4800 [math.AT] | DOI | MR | Zbl

[36] Davis M.W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[37] Dynnikov I.A., Novikov S.P., “Geometry of the triangle equation on two-manifolds”, Moscow Math. J., 3:2 (2003), 419–438 | MR | Zbl

[38] Feichtner E.M., Sturmfels B., “Matroid polytopes, nested sets and Bergman fans”, Port. math., 62:4 (2005), 437–468 | MR | Zbl

[39] Fukukawa Y., Masuda M., “Buchstaber invariants of skeleta of a simplex”, Osaka J. Math., 48:2 (2011), 549–582, arXiv: 0908.3448v2 [math.AT] | MR | Zbl

[40] Gaifullin A.A., “Universal realisators for homology classes”, Geom. Topol., 17:3 (2013), 1745–1772, arXiv: 1201.4823 [math.AT] | DOI | MR | Zbl

[41] Gitler S., López de Medrano S., Intersections of quadrics, moment–angle manifolds and connected sums, E-print, 2009, arXiv: 0901.2580v1 [math.GT]

[42] Grünbaum B., Convex polytopes, Grad. Texts Math., 221, 2nd ed., Springer, New York, 2003 | DOI | MR

[43] Erokhovets N., Buchstaber invariant of simple polytopes, E-print, 2009, arXiv: 0908.3407 [math.AT]

[44] Erokhovets N., Criterion for the Buchstaber invariant of simplicial complexes to be equal to two, E-print, 2012, arXiv: 1212.3970 [math.AT]

[45] Joswig M., Projectivities in simplicial complexes and colorings of simple polytopes, E-print, 2001, arXiv: math/0102186v3 [math.CO] | MR

[46] Klee V., Walkup D.W., “The $d$-step conjecture for polyhedra of dimension $d6$”, Acta math., 117 (1967), 53–78 | DOI | MR | Zbl

[47] López de Medrano S., “Topology of the intersection of quadrics in $\mathbb R^n$”, Algebraic topology, Proc. Int. Conf. (Arcata, CA), Lect. Notes Math., 1370, Springer, Berlin, 1986, 280–292 | MR

[48] MacLane S., “Some interpretations of abstract linear dependence in terms of projective geometry”, Amer. J. Math., 58 (1936), 236–240 | DOI | MR

[49] MacLane S., “A lattice formulation for transcendence degrees and $p$-bases”, Duke Math. J., 4 (1938), 455–468 | DOI | MR | Zbl

[50] Oxley J.G., Matroid theory, Oxford Univ. Press, Oxford, 2006 | MR | Zbl

[51] Pachner U., “Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulationen kompakter semilinearer Mannigfaltigkeiten”, Abh. Math. Semin. Univ. Hamburg, 57 (1987), 69–86 | DOI | MR | Zbl

[52] Pachner U., “P.l. homeomorphic manifolds are equivalent by elementary shellings”, Eur. J. Comb., 12:2 (1991), 129–145 | DOI | MR | Zbl

[53] Postnikov A., Permutohedra, associahedra, and beyond, E-print, 2005, arXiv: math/0507163 [math.CO] | MR

[54] Postnikov A., Reiner V., Williams L., Faces of generalized permutohedra, E-print, 2006, arXiv: math/0609184v2 [math.CO] | MR

[55] Provan J.S., Billera L.J., “Decompositions of simplicial complexes related to diameters of convex polyhedra”, Math. Oper. Res., 5:4 (1980), 576–594 | DOI | MR | Zbl

[56] Whitney H., “On the abstract properties of linear dependence”, Amer. J. Math., 57 (1935), 509–533 | DOI | MR

[57] Zelevinsky A., “Nested complexes and their polyhedral realizations”, Pure Appl. Math. Q., 2:3 (2006), 655–671 | DOI | MR | Zbl

[58] Ziegler G.M., Lectures on polytopes, Grad. Texts Math., 152, Springer, New York, 2007 ; Tsigler G., Teoriya mnogogrannikov, MTsNMO, M., 2013 | MR

[59] Živaljević R.T., Combinatorial groupoids, cubical complexes, and the Lovász conjecture, E-print, 2005, arXiv: math/0510204 [math.CO] | MR