Flexible cross-polytopes in spaces of constant curvature
Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 88-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct self-intersecting flexible cross-polytopes in the spaces of constant curvature, that is, in Euclidean spaces $\mathbb E^n$, spheres $\mathbb S^n$, and Lobachevsky spaces $\Lambda ^n$ of all dimensions $n$. In dimensions $n\ge5$, these are the first examples of flexible polyhedra. Moreover, we classify all flexible cross-polytopes in each of the spaces $\mathbb E^n$, $\mathbb S^n$, and $\Lambda ^n$. For each type of flexible cross-polytopes, we provide an explicit parametrization of the flexion by either rational or elliptic functions.
@article{TRSPY_2014_286_a5,
     author = {A. A. Gaifullin},
     title = {Flexible cross-polytopes in spaces of constant curvature},
     journal = {Informatics and Automation},
     pages = {88--128},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a5/}
}
TY  - JOUR
AU  - A. A. Gaifullin
TI  - Flexible cross-polytopes in spaces of constant curvature
JO  - Informatics and Automation
PY  - 2014
SP  - 88
EP  - 128
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a5/
LA  - ru
ID  - TRSPY_2014_286_a5
ER  - 
%0 Journal Article
%A A. A. Gaifullin
%T Flexible cross-polytopes in spaces of constant curvature
%J Informatics and Automation
%D 2014
%P 88-128
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a5/
%G ru
%F TRSPY_2014_286_a5
A. A. Gaifullin. Flexible cross-polytopes in spaces of constant curvature. Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 88-128. http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a5/

[1] Cauchy A.L., “Deuxième mémoire sur les polygones et les polyèdres”, J. Éc. Polytech., 9 (1813), 87–98

[2] Bricard R., “Mémoire sur la théorie de l'octaèdre articulé”, J. math. pures appl. Sér. 5, 3 (1897), 113–148 | Zbl

[3] Bennett G.T., “Deformable octahedra”, Proc. London Math. Soc. Ser. 2, 10 (1912), 309–343 | DOI | MR

[4] Connelly R., “A counterexample to the rigidity conjecture for polyhedra”, Publ. math. Inst. Hautes Étud. Sci., 47 (1977), 333–338 | DOI | MR | Zbl

[5] Steffen K., A symmetric flexible Connelly sphere with only nine vertices, Handwritten note, IHES, Bures-sur-Yvette, 1978 http://www.math.cornell.edu/~connelly/Steffen.pdf

[6] Shtogrin M.I., “Izgibaemyi disk s ruchkoi”, UMN, 68:5 (2013), 177–178 | DOI | MR | Zbl

[7] Aleksandrov V.A., “Novyi primer izgibaemogo mnogogrannika”, Sib. mat. zhurn., 36:6 (1995), 1215–1224 | MR | Zbl

[8] Stachel H., “Flexible octahedra in the hyperbolic space”, Non-Euclidean geometries: János Bolyai memorial volume, Math. Appl., 581, eds. A. Prékopa et al., Springer, New York, 2006, 209–225 | MR | Zbl

[9] Stachel H., “Flexible cross-polytopes in the Euclidean $4$-space”, J. Geom. Graph., 4:2 (2000), 159–167 | MR | Zbl

[10] Connelly R., “Conjectures and open questions in rigidity”, Proc. Int. Congr. Math., Helsinki, 1978, V. 1, Acad. Sci. Fennica, Helsinki, 1980, 407–414 | MR

[11] Sabitov I.Kh., “Ob'em mnogogrannika kak funktsiya ego metriki”, Fund. i prikl. matematika, 2:4 (1996), 1235–1246 | MR | Zbl

[12] Sabitov I.Kh., “Obobschennaya formula Gerona–Tartalya i nekotorye ee sledstviya”, Mat. sb., 189:10 (1998), 105–134 | DOI | MR | Zbl

[13] Sabitov I.Kh., “The volume as a metric invariant of polyhedra”, Discrete Comput. Geom., 20:4 (1998), 405–425 | DOI | MR | Zbl

[14] Connelly R., Sabitov I., Walz A., “The bellows conjecture”, Beitr. Algebra Geom., 38:1 (1997), 1–10 | MR | Zbl

[15] Gaifullin A.A., “Sabitov polynomials for volumes of polyhedra in four dimensions”, Adv. Math., 252 (2014), 586–611, arXiv: 1108.6014 [math.MG] | DOI | MR | Zbl

[16] Gaifullin A.A., “Generalization of Sabitov's theorem to polyhedra of arbitrary dimensions”, Discrete Comput. Geom., 52:2 (2014), 195–220, arXiv: 1210.5408 [math.MG] | DOI | MR

[17] Alexander R., “Lipschitzian mappings and total mean curvature of polyhedral surfaces. I”, Trans. Amer. Math. Soc., 288 (1985), 661–678 | DOI | MR | Zbl

[18] Izmestiev I.V., Deformation of quadrilaterals and addition on elliptic curves, Preprint, Freie Univ. Berlin, 2013

[19] Darboux G., “De l'emploi des fonctions elliptiques dans la théorie du quadrilatère plan”, Bull. sci. math. astron. Sér. 2, 3:1 (1879), 109–128

[20] Konnelli R., “Ob odnom podkhode k probleme neizgibaemosti”, Issledovaniya po metricheskoi teorii poverkhnostei, Mir, M., 1980, 164–209 | MR

[21] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii: Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1967 | MR

[22] Uitteker E.T., Vatson G.N., Kurs sovremennogo analiza. Ch. 2: Transtsendentnye funktsii, Gostekhizdat, L.; M., 1934