Flexible cross-polytopes in spaces of constant curvature
Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 88-128

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct self-intersecting flexible cross-polytopes in the spaces of constant curvature, that is, in Euclidean spaces $\mathbb E^n$, spheres $\mathbb S^n$, and Lobachevsky spaces $\Lambda ^n$ of all dimensions $n$. In dimensions $n\ge5$, these are the first examples of flexible polyhedra. Moreover, we classify all flexible cross-polytopes in each of the spaces $\mathbb E^n$, $\mathbb S^n$, and $\Lambda ^n$. For each type of flexible cross-polytopes, we provide an explicit parametrization of the flexion by either rational or elliptic functions.
@article{TRSPY_2014_286_a5,
     author = {A. A. Gaifullin},
     title = {Flexible cross-polytopes in spaces of constant curvature},
     journal = {Informatics and Automation},
     pages = {88--128},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a5/}
}
TY  - JOUR
AU  - A. A. Gaifullin
TI  - Flexible cross-polytopes in spaces of constant curvature
JO  - Informatics and Automation
PY  - 2014
SP  - 88
EP  - 128
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a5/
LA  - ru
ID  - TRSPY_2014_286_a5
ER  - 
%0 Journal Article
%A A. A. Gaifullin
%T Flexible cross-polytopes in spaces of constant curvature
%J Informatics and Automation
%D 2014
%P 88-128
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a5/
%G ru
%F TRSPY_2014_286_a5
A. A. Gaifullin. Flexible cross-polytopes in spaces of constant curvature. Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 88-128. http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a5/