Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2014_286_a5, author = {A. A. Gaifullin}, title = {Flexible cross-polytopes in spaces of constant curvature}, journal = {Informatics and Automation}, pages = {88--128}, publisher = {mathdoc}, volume = {286}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a5/} }
A. A. Gaifullin. Flexible cross-polytopes in spaces of constant curvature. Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 88-128. http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a5/
[1] Cauchy A.L., “Deuxième mémoire sur les polygones et les polyèdres”, J. Éc. Polytech., 9 (1813), 87–98
[2] Bricard R., “Mémoire sur la théorie de l'octaèdre articulé”, J. math. pures appl. Sér. 5, 3 (1897), 113–148 | Zbl
[3] Bennett G.T., “Deformable octahedra”, Proc. London Math. Soc. Ser. 2, 10 (1912), 309–343 | DOI | MR
[4] Connelly R., “A counterexample to the rigidity conjecture for polyhedra”, Publ. math. Inst. Hautes Étud. Sci., 47 (1977), 333–338 | DOI | MR | Zbl
[5] Steffen K., A symmetric flexible Connelly sphere with only nine vertices, Handwritten note, IHES, Bures-sur-Yvette, 1978 http://www.math.cornell.edu/~connelly/Steffen.pdf
[6] Shtogrin M.I., “Izgibaemyi disk s ruchkoi”, UMN, 68:5 (2013), 177–178 | DOI | MR | Zbl
[7] Aleksandrov V.A., “Novyi primer izgibaemogo mnogogrannika”, Sib. mat. zhurn., 36:6 (1995), 1215–1224 | MR | Zbl
[8] Stachel H., “Flexible octahedra in the hyperbolic space”, Non-Euclidean geometries: János Bolyai memorial volume, Math. Appl., 581, eds. A. Prékopa et al., Springer, New York, 2006, 209–225 | MR | Zbl
[9] Stachel H., “Flexible cross-polytopes in the Euclidean $4$-space”, J. Geom. Graph., 4:2 (2000), 159–167 | MR | Zbl
[10] Connelly R., “Conjectures and open questions in rigidity”, Proc. Int. Congr. Math., Helsinki, 1978, V. 1, Acad. Sci. Fennica, Helsinki, 1980, 407–414 | MR
[11] Sabitov I.Kh., “Ob'em mnogogrannika kak funktsiya ego metriki”, Fund. i prikl. matematika, 2:4 (1996), 1235–1246 | MR | Zbl
[12] Sabitov I.Kh., “Obobschennaya formula Gerona–Tartalya i nekotorye ee sledstviya”, Mat. sb., 189:10 (1998), 105–134 | DOI | MR | Zbl
[13] Sabitov I.Kh., “The volume as a metric invariant of polyhedra”, Discrete Comput. Geom., 20:4 (1998), 405–425 | DOI | MR | Zbl
[14] Connelly R., Sabitov I., Walz A., “The bellows conjecture”, Beitr. Algebra Geom., 38:1 (1997), 1–10 | MR | Zbl
[15] Gaifullin A.A., “Sabitov polynomials for volumes of polyhedra in four dimensions”, Adv. Math., 252 (2014), 586–611, arXiv: 1108.6014 [math.MG] | DOI | MR | Zbl
[16] Gaifullin A.A., “Generalization of Sabitov's theorem to polyhedra of arbitrary dimensions”, Discrete Comput. Geom., 52:2 (2014), 195–220, arXiv: 1210.5408 [math.MG] | DOI | MR
[17] Alexander R., “Lipschitzian mappings and total mean curvature of polyhedral surfaces. I”, Trans. Amer. Math. Soc., 288 (1985), 661–678 | DOI | MR | Zbl
[18] Izmestiev I.V., Deformation of quadrilaterals and addition on elliptic curves, Preprint, Freie Univ. Berlin, 2013
[19] Darboux G., “De l'emploi des fonctions elliptiques dans la théorie du quadrilatère plan”, Bull. sci. math. astron. Sér. 2, 3:1 (1879), 109–128
[20] Konnelli R., “Ob odnom podkhode k probleme neizgibaemosti”, Issledovaniya po metricheskoi teorii poverkhnostei, Mir, M., 1980, 164–209 | MR
[21] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii: Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1967 | MR
[22] Uitteker E.T., Vatson G.N., Kurs sovremennogo analiza. Ch. 2: Transtsendentnye funktsii, Gostekhizdat, L.; M., 1934