Painlev\'e test for ordinary differential equations associated with the heat equation
Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 75-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider nonlinear ordinary differential equations up to the sixth order that are associated with the heat equation. Each of them is subjected to the Painlevé analysis. For the fourth- and sixth-order equations we obtain a criterion for having the Painlevé property; for the fifth-order equation we formulate necessary conditions for passing the Painlevé test. We also present a fifth-order equation analogous to the Chazy-$3$ equation.
@article{TRSPY_2014_286_a4,
     author = {A. V. Vinogradov},
     title = {Painlev\'e test for ordinary differential equations associated with the heat equation},
     journal = {Informatics and Automation},
     pages = {75--87},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a4/}
}
TY  - JOUR
AU  - A. V. Vinogradov
TI  - Painlev\'e test for ordinary differential equations associated with the heat equation
JO  - Informatics and Automation
PY  - 2014
SP  - 75
EP  - 87
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a4/
LA  - ru
ID  - TRSPY_2014_286_a4
ER  - 
%0 Journal Article
%A A. V. Vinogradov
%T Painlev\'e test for ordinary differential equations associated with the heat equation
%J Informatics and Automation
%D 2014
%P 75-87
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a4/
%G ru
%F TRSPY_2014_286_a4
A. V. Vinogradov. Painlev\'e test for ordinary differential equations associated with the heat equation. Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 75-87. http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a4/

[1] Bunkova E.Yu., Bukhshtaber V.M., “Polinomialnye dinamicheskie sistemy i obyknovennye differentsialnye uravneniya, assotsiirovannye s uravneniem teploprovodnosti”, Funkts. analiz i ego pril., 46:3 (2012), 16–37 | DOI | MR | Zbl

[2] Conte R.M., Musette M., The Painlevé handbook, Springer, Dordrecht, 2008 ; Kont R., Myuzett M., Metod Penleve i ego prilozheniya, In-t kompyut. issled., Moskva; Izhevsk, 2011 | MR | Zbl

[3] Kudryashov N.A., Analiticheskaya teoriya nelineinykh differentsialnykh uravnenii, NITs “Regulyarnaya i khaoticheskaya dinamika”, Moskva: Izhevsk, 2004

[4] Kowalevski S., “Sur le problème de la rotation d'un corps solide autour d'un point fixe”, Acta math., 12 (1889), 177–232 | DOI | MR

[5] Gambier B., Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes, Thèse, Paris, 1909; Acta math., 33 (1910), 1–55 | DOI | MR

[6] Conte R., The Painlevé approach to nonlinear ordinary differential equations, E-print, 1997, arXiv: solv-int/9710020v1 | MR

[7] Cosgrove C.M., Chazy classes IX–XII of third-order differential equations, Res. Rep. 98-23, Univ. Sydney, Sydney, 1998.

[8] Kudryashov N.A., “Some fourth-order ordinary differential equations which pass the Painlevé test”, J. Nonlinear Math. Phys., 8, Suppl. (2001), 172–177 | DOI | MR | Zbl