Two-sided bounds for the complexity of hyperbolic three-manifolds with geodesic boundary
Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 65-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an infinite family of hyperbolic three-manifolds with geodesic boundary that generalize the Thurston and Paoluzzi–Zimmermann manifolds. For the manifolds of this family, we present two-sided bounds for their complexity.
@article{TRSPY_2014_286_a3,
     author = {A. Yu. Vesnin and E. A. Fominykh},
     title = {Two-sided bounds for the complexity of hyperbolic three-manifolds with geodesic boundary},
     journal = {Informatics and Automation},
     pages = {65--74},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a3/}
}
TY  - JOUR
AU  - A. Yu. Vesnin
AU  - E. A. Fominykh
TI  - Two-sided bounds for the complexity of hyperbolic three-manifolds with geodesic boundary
JO  - Informatics and Automation
PY  - 2014
SP  - 65
EP  - 74
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a3/
LA  - ru
ID  - TRSPY_2014_286_a3
ER  - 
%0 Journal Article
%A A. Yu. Vesnin
%A E. A. Fominykh
%T Two-sided bounds for the complexity of hyperbolic three-manifolds with geodesic boundary
%J Informatics and Automation
%D 2014
%P 65-74
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a3/
%G ru
%F TRSPY_2014_286_a3
A. Yu. Vesnin; E. A. Fominykh. Two-sided bounds for the complexity of hyperbolic three-manifolds with geodesic boundary. Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 65-74. http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a3/

[1] Matveev S.V., Algoritmicheskaya topologiya i klassifikatsiya trekhmernykh mnogoobrazii, MTsNMO, M., 2007

[2] Matveev S.V., “Tabulirovanie trekhmernykh mnogoobrazii”, UMN, 60:4 (2005), 97–122 | DOI | MR | Zbl

[3] Frigerio R., Martelli B., Petronio C., “Small hyperbolic 3-manifolds with geodesic boundary”, Exp. Math., 13:2 (2004), 171–184 | DOI | MR | Zbl

[4] Matveev S., Fominykh E., Potapov V., Tarkaev V., Atlas of 3-manifolds, http://www.matlas.math.csu.ru

[5] Anisov S., “Exact values of complexity for an infinite number of 3-manifolds”, Moscow Math. J., 5:2 (2005), 305–310 | MR | Zbl

[6] Frigerio R., Martelli B., Petronio C., “Complexity and Heegaard genus of an infinite class of compact 3-manifolds”, Pac. J. Math., 210:2 (2003), 283–297 | DOI | MR | Zbl

[7] Frigerio R., Martelli B., Petronio C., “Dehn filling of cusped hyperbolic 3-manifolds with geodesic boundary”, J. Diff. Geom., 64:3 (2003), 425–455 | MR | Zbl

[8] Vesnin A.Yu., Fominykh E.A., “Tochnye znacheniya slozhnosti mnogoobrazii Paolyutsi–Tsimmermana”, DAN, 439:6 (2011), 727–729 | MR | Zbl

[9] Vesnin A.Yu., Fominykh E.A., “O slozhnosti trekhmernykh giperbolicheskikh mnogoobrazii s geodezicheskim kraem”, Sib. mat. zhurn., 53:4 (2012), 781–793 | MR | Zbl

[10] Jaco W., Rubinstein H., Tillmann S., “Minimal triangulations for an infinite family of lens spaces”, J. Topol., 2:1 (2009), 157–180 | DOI | MR | Zbl

[11] Jaco W., Rubinstein J.H., Tillmann S., “Coverings and minimal triangulations of 3-manifolds”, Algebr. Geom. Topol., 11:3 (2011), 1257–1265 | DOI | MR | Zbl

[12] Matveev S., Petronio C., Vesnin A., “Two-sided asymptotic bounds for the complexity of some closed hyperbolic three-manifolds”, J. Aust. Math. Soc., 86:2 (2009), 205–219 | DOI | MR | Zbl

[13] Petronio C., Vesnin A., “Two-sided bounds for the complexity of cyclic branched coverings of two-bridge links”, Osaka J. Math., 46:4 (2009), 1077–1095 | MR | Zbl

[14] Fominykh E.A., “Khirurgii Dena na uzle vosmerka: verkhnyaya otsenka slozhnosti”, Sib. mat. zhurn., 52:3 (2011), 680–689 | MR | Zbl

[15] Fominykh E., Wiest B., “Upper bounds for the complexity of torus knot complements”, J. Knot Theory Ramif., 22:10 (2013), 1350053 | DOI | MR | Zbl

[16] Vesnin A.Yu., Matveev S.V., Fominykh E.A., “Slozhnost trekhmernykh mnogoobrazii: tochnye znacheniya i otsenki”, Sib. elektron. mat. izv., 8 (2011), 341–364 | MR

[17] Paoluzzi L., Zimmermann B., “On a class of hyperbolic 3-manifolds and groups with one defining relation”, Geom. Dedicata., 60:2 (1996), 113–123 | DOI | MR | Zbl

[18] Thurston W.P., Three-dimensional geometry and topology, V. 1, Princeton Math. Ser., 35, Princeton Univ. Press, Princeton, NJ, 1997 | MR | Zbl

[19] Vinberg E.B., “Ob'emy neevklidovykh mnogogrannikov”, UMN, 48:2 (1993), 17–46 | MR | Zbl

[20] Ushijima A., “The canonical decompositions of some family of compact orientable hyperbolic 3-manifolds with totally geodesic boundary”, Geom. Dedicata., 78:1 (1999), 21–47 | DOI | MR | Zbl