Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2014_286_a3, author = {A. Yu. Vesnin and E. A. Fominykh}, title = {Two-sided bounds for the complexity of hyperbolic three-manifolds with geodesic boundary}, journal = {Informatics and Automation}, pages = {65--74}, publisher = {mathdoc}, volume = {286}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a3/} }
TY - JOUR AU - A. Yu. Vesnin AU - E. A. Fominykh TI - Two-sided bounds for the complexity of hyperbolic three-manifolds with geodesic boundary JO - Informatics and Automation PY - 2014 SP - 65 EP - 74 VL - 286 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a3/ LA - ru ID - TRSPY_2014_286_a3 ER -
A. Yu. Vesnin; E. A. Fominykh. Two-sided bounds for the complexity of hyperbolic three-manifolds with geodesic boundary. Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 65-74. http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a3/
[1] Matveev S.V., Algoritmicheskaya topologiya i klassifikatsiya trekhmernykh mnogoobrazii, MTsNMO, M., 2007
[2] Matveev S.V., “Tabulirovanie trekhmernykh mnogoobrazii”, UMN, 60:4 (2005), 97–122 | DOI | MR | Zbl
[3] Frigerio R., Martelli B., Petronio C., “Small hyperbolic 3-manifolds with geodesic boundary”, Exp. Math., 13:2 (2004), 171–184 | DOI | MR | Zbl
[4] Matveev S., Fominykh E., Potapov V., Tarkaev V., Atlas of 3-manifolds, http://www.matlas.math.csu.ru
[5] Anisov S., “Exact values of complexity for an infinite number of 3-manifolds”, Moscow Math. J., 5:2 (2005), 305–310 | MR | Zbl
[6] Frigerio R., Martelli B., Petronio C., “Complexity and Heegaard genus of an infinite class of compact 3-manifolds”, Pac. J. Math., 210:2 (2003), 283–297 | DOI | MR | Zbl
[7] Frigerio R., Martelli B., Petronio C., “Dehn filling of cusped hyperbolic 3-manifolds with geodesic boundary”, J. Diff. Geom., 64:3 (2003), 425–455 | MR | Zbl
[8] Vesnin A.Yu., Fominykh E.A., “Tochnye znacheniya slozhnosti mnogoobrazii Paolyutsi–Tsimmermana”, DAN, 439:6 (2011), 727–729 | MR | Zbl
[9] Vesnin A.Yu., Fominykh E.A., “O slozhnosti trekhmernykh giperbolicheskikh mnogoobrazii s geodezicheskim kraem”, Sib. mat. zhurn., 53:4 (2012), 781–793 | MR | Zbl
[10] Jaco W., Rubinstein H., Tillmann S., “Minimal triangulations for an infinite family of lens spaces”, J. Topol., 2:1 (2009), 157–180 | DOI | MR | Zbl
[11] Jaco W., Rubinstein J.H., Tillmann S., “Coverings and minimal triangulations of 3-manifolds”, Algebr. Geom. Topol., 11:3 (2011), 1257–1265 | DOI | MR | Zbl
[12] Matveev S., Petronio C., Vesnin A., “Two-sided asymptotic bounds for the complexity of some closed hyperbolic three-manifolds”, J. Aust. Math. Soc., 86:2 (2009), 205–219 | DOI | MR | Zbl
[13] Petronio C., Vesnin A., “Two-sided bounds for the complexity of cyclic branched coverings of two-bridge links”, Osaka J. Math., 46:4 (2009), 1077–1095 | MR | Zbl
[14] Fominykh E.A., “Khirurgii Dena na uzle vosmerka: verkhnyaya otsenka slozhnosti”, Sib. mat. zhurn., 52:3 (2011), 680–689 | MR | Zbl
[15] Fominykh E., Wiest B., “Upper bounds for the complexity of torus knot complements”, J. Knot Theory Ramif., 22:10 (2013), 1350053 | DOI | MR | Zbl
[16] Vesnin A.Yu., Matveev S.V., Fominykh E.A., “Slozhnost trekhmernykh mnogoobrazii: tochnye znacheniya i otsenki”, Sib. elektron. mat. izv., 8 (2011), 341–364 | MR
[17] Paoluzzi L., Zimmermann B., “On a class of hyperbolic 3-manifolds and groups with one defining relation”, Geom. Dedicata., 60:2 (1996), 113–123 | DOI | MR | Zbl
[18] Thurston W.P., Three-dimensional geometry and topology, V. 1, Princeton Math. Ser., 35, Princeton Univ. Press, Princeton, NJ, 1997 | MR | Zbl
[19] Vinberg E.B., “Ob'emy neevklidovykh mnogogrannikov”, UMN, 48:2 (1993), 17–46 | MR | Zbl
[20] Ushijima A., “The canonical decompositions of some family of compact orientable hyperbolic 3-manifolds with totally geodesic boundary”, Geom. Dedicata., 78:1 (1999), 21–47 | DOI | MR | Zbl