Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2014_286_a2, author = {A. Biggs and H. M. Khudaverdian}, title = {Operator pencils on the algebra of densities}, journal = {Informatics and Automation}, pages = {40--64}, publisher = {mathdoc}, volume = {286}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a2/} }
A. Biggs; H. M. Khudaverdian. Operator pencils on the algebra of densities. Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 40-64. http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a2/
[1] Biggs A., Geometric structures on the algebra of densities, PhD Thesis, Univ. Manchester, 2014
[2] Biggs A., Khudaverdian H.M., “Operator pencil passing through a given operator”, J. Math. Phys., 54:12 (2013), 123503 | DOI | MR | Zbl
[3] Duval C., Lecomte P., Ovsienko V., “Conformally equivariant quantization: existence and uniqueness”, Ann. Inst. Fourier, 49:6 (1999), 1999–2029 | DOI | MR | Zbl
[4] Duval C., Ovsienko V.Yu., “Space of second-order linear differential operators as a module over the Lie algebra of vector fields”, Adv. Math., 132:2 (1997), 316–333 | DOI | MR | Zbl
[5] Khudaverdian H.M., Kaluza–Klein theory revisited: projective structures and differential operators on algebra of densities, E-print, 2013, arXiv: 1312.5208 [math-ph]
[6] Khudaverdian H.M., Voronov Th., “On odd Laplace operators. II”, Geometry, topology, and mathematical physics, AMS Transl. Ser. 2, 212, Amer. Math. Soc., Providence, RI, 2004, 179–205 | MR | Zbl
[7] Khudaverdian H.M., Voronov Th.Th., Second order operators on the algebra of densities and a groupoid of connections, Max-Planck-Inst. Math., Bonn, 2011
[8] Khudaverdian H.M., Voronov Th.Th., “Geometry of differential operators of second order, the algebra of densities, and groupoids”, J. Geom. Phys., 64 (2013), 31–53 | DOI | MR | Zbl
[9] Khudaverdian H.M., Voronov Th.Th., Geometric constructions on the algebra of densities, E-print, 2013, arXiv: 1310.0784 [math-ph]
[10] Lecomte P.B.A., Mathonet P., Tousset E., “Comparison of some modules of the Lie algebra of vector fields”, Indag. math. New Ser., 7:4 (1996), 461–471 | DOI | MR | Zbl
[11] Lecomte P.B.A., Ovsienko V.Yu., “Projectively equivariant symbol calculus”, Lett. Math. Phys., 49:3 (1999), 173–196 | DOI | MR | Zbl
[12] Mathonet P., “Intertwining operators between some spaces of differential operators on a manifold”, Commun. Algebra., 27:2 (1999), 755–776 | DOI | MR | Zbl
[13] Ovsienko V., Tabachnikov S., Projective Differential Geometry Old and New: From the Schwarzian Derivative to the Cohomology of Diffeomorphism Groups, Cambridge Univ. Press, Cambridge, 2005 ; Ovsienko V.Yu., Tabachnikov S.L., Proektivnaya differentsialnaya geometriya: Staroe i novoe: ot proizvodnoi Shvartsa do kogomologii grupp diffeomorfizmov, MTsNMO, M., 2008 | MR | Zbl
[14] Peetre J., “Une caractérisation abstraite des opérateurs différentiels”, Math. Scand., 7 (1959), 211–218 ; Réctification Math. Scand., 8 (1960), 116–120 | MR | Zbl | MR | Zbl