Operator pencils on the algebra of densities
Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 40-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue to study equivariant pencil liftings and differential operators on the algebra of densities. We emphasize the role played by the geometry of the extended manifold where the algebra of densities is a special class of functions. Firstly we consider basic examples. We give a projective line of $\mathrm{diff}M)$-equivariant pencil liftings for first order operators and describe the canonical second order self-adjoint lifting. Secondly we study pencil liftings equivariant with respect to volume preserving transformations. This helps to understand the role of self-adjointness for the canonical pencils. Then we introduce the Duval–Lecomte–Ovsienko (DLO) pencil lifting which is derived from the full symbol calculus of projective quantisation. We use the DLO pencil lifting to describe all regular $\mathrm{proj}$-equivariant pencil liftings. In particular, the comparison of these pencils with the canonical pencil for second order operators leads to objects related to the Schwarzian.
@article{TRSPY_2014_286_a2,
     author = {A. Biggs and H. M. Khudaverdian},
     title = {Operator pencils on the algebra of densities},
     journal = {Informatics and Automation},
     pages = {40--64},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a2/}
}
TY  - JOUR
AU  - A. Biggs
AU  - H. M. Khudaverdian
TI  - Operator pencils on the algebra of densities
JO  - Informatics and Automation
PY  - 2014
SP  - 40
EP  - 64
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a2/
LA  - ru
ID  - TRSPY_2014_286_a2
ER  - 
%0 Journal Article
%A A. Biggs
%A H. M. Khudaverdian
%T Operator pencils on the algebra of densities
%J Informatics and Automation
%D 2014
%P 40-64
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a2/
%G ru
%F TRSPY_2014_286_a2
A. Biggs; H. M. Khudaverdian. Operator pencils on the algebra of densities. Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 40-64. http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a2/

[1] Biggs A., Geometric structures on the algebra of densities, PhD Thesis, Univ. Manchester, 2014

[2] Biggs A., Khudaverdian H.M., “Operator pencil passing through a given operator”, J. Math. Phys., 54:12 (2013), 123503 | DOI | MR | Zbl

[3] Duval C., Lecomte P., Ovsienko V., “Conformally equivariant quantization: existence and uniqueness”, Ann. Inst. Fourier, 49:6 (1999), 1999–2029 | DOI | MR | Zbl

[4] Duval C., Ovsienko V.Yu., “Space of second-order linear differential operators as a module over the Lie algebra of vector fields”, Adv. Math., 132:2 (1997), 316–333 | DOI | MR | Zbl

[5] Khudaverdian H.M., Kaluza–Klein theory revisited: projective structures and differential operators on algebra of densities, E-print, 2013, arXiv: 1312.5208 [math-ph]

[6] Khudaverdian H.M., Voronov Th., “On odd Laplace operators. II”, Geometry, topology, and mathematical physics, AMS Transl. Ser. 2, 212, Amer. Math. Soc., Providence, RI, 2004, 179–205 | MR | Zbl

[7] Khudaverdian H.M., Voronov Th.Th., Second order operators on the algebra of densities and a groupoid of connections, Max-Planck-Inst. Math., Bonn, 2011

[8] Khudaverdian H.M., Voronov Th.Th., “Geometry of differential operators of second order, the algebra of densities, and groupoids”, J. Geom. Phys., 64 (2013), 31–53 | DOI | MR | Zbl

[9] Khudaverdian H.M., Voronov Th.Th., Geometric constructions on the algebra of densities, E-print, 2013, arXiv: 1310.0784 [math-ph]

[10] Lecomte P.B.A., Mathonet P., Tousset E., “Comparison of some modules of the Lie algebra of vector fields”, Indag. math. New Ser., 7:4 (1996), 461–471 | DOI | MR | Zbl

[11] Lecomte P.B.A., Ovsienko V.Yu., “Projectively equivariant symbol calculus”, Lett. Math. Phys., 49:3 (1999), 173–196 | DOI | MR | Zbl

[12] Mathonet P., “Intertwining operators between some spaces of differential operators on a manifold”, Commun. Algebra., 27:2 (1999), 755–776 | DOI | MR | Zbl

[13] Ovsienko V., Tabachnikov S., Projective Differential Geometry Old and New: From the Schwarzian Derivative to the Cohomology of Diffeomorphism Groups, Cambridge Univ. Press, Cambridge, 2005 ; Ovsienko V.Yu., Tabachnikov S.L., Proektivnaya differentsialnaya geometriya: Staroe i novoe: ot proizvodnoi Shvartsa do kogomologii grupp diffeomorfizmov, MTsNMO, M., 2008 | MR | Zbl

[14] Peetre J., “Une caractérisation abstraite des opérateurs différentiels”, Math. Scand., 7 (1959), 211–218 ; Réctification Math. Scand., 8 (1960), 116–120 | MR | Zbl | MR | Zbl