On the rational type of moment--angle complexes
Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 241-245.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note, it is shown that the only moment–angle complexes which are rationally elliptic are those which are products of odd spheres and a disk.
@article{TRSPY_2014_286_a11,
     author = {A. Bahri and M. Bendersky and F. R. Cohen and S. Gitler},
     title = {On the rational type of moment--angle complexes},
     journal = {Informatics and Automation},
     pages = {241--245},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a11/}
}
TY  - JOUR
AU  - A. Bahri
AU  - M. Bendersky
AU  - F. R. Cohen
AU  - S. Gitler
TI  - On the rational type of moment--angle complexes
JO  - Informatics and Automation
PY  - 2014
SP  - 241
EP  - 245
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a11/
LA  - en
ID  - TRSPY_2014_286_a11
ER  - 
%0 Journal Article
%A A. Bahri
%A M. Bendersky
%A F. R. Cohen
%A S. Gitler
%T On the rational type of moment--angle complexes
%J Informatics and Automation
%D 2014
%P 241-245
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a11/
%G en
%F TRSPY_2014_286_a11
A. Bahri; M. Bendersky; F. R. Cohen; S. Gitler. On the rational type of moment--angle complexes. Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 241-245. http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a11/

[1] Bahri A., Bendersky M., Cohen F.R., Gitler S., “The polyhedral product functor: A method of decomposition for moment–angle complexes, arrangements and related spaces”, Adv. Math., 225 (2010), 1634–1668 | DOI | MR | Zbl

[2] Bahri A., Bendersky M., Cohen F.R., Gitler S., “Cup-products for the polyhedral product functor”, Math. Proc. Cambridge Philos. Soc., 153 (2012), 457–469 | DOI | MR | Zbl

[3] Baskakov I.V., “Cohomology of $K$-powers of spaces and the combinatorics of simplicial divisions”, Russ. Math. Surv., 57 (2002), 989–990 | DOI | DOI | MR | Zbl

[4] Berglund A., Homotopy invariants of Davis–Januszkiewicz spaces and moment–angle complexes, Preprint, Univ. Copenhagen, 2010 http://www.math.ku.dk/~alexb/papers.html

[5] Berglund A., Jöllenbeck M., “On the Golod property of Stanly–Reisner rings”, J. Algebra, 315 (2007), 249–273 | DOI | MR | Zbl

[6] Buchstaber V.M., Panov T.E., Torus actions and their applications in topology and combinatorics, Univ. Lect. Ser., 24, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[7] Debongnie G., “Rational homotopy type of subspace arrangements with a geometric lattice”, Proc. Amer. Math. Soc., 136 (2008), 2245–2252 | DOI | MR | Zbl

[8] Denham G., Suciu A.I., “Moment–angle complexes, monomial ideals and Massey products”, Pure Appl. Math. Q., 3:1 (2007), 25–60 | DOI | MR | Zbl

[9] Félix Y., Halperin S., “Formal spaces with finite-dimensional rational homotopy”, Trans. Amer. Math. Soc., 270:2 (1982), 575–588 | DOI | MR | Zbl

[10] Félix Y., Halperin S., Thomas J.-C., Rational homotopy theory, Grad. Texts Math., 205, Springer, New York, 2001 | DOI | MR | Zbl

[11] Gurvich M., Some results on the topology of quasitoric manifolds and their equivariant mapping spaces, PhD Thesis, Univ. California, San Diego, 2008 | MR