Geometric aspects of a~deformation of the standard addition on integer lattices
Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 231-240.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak A_n$ be the set of all those vectors of the standard lattice $\mathbb Z^n$ whose coordinates are pairwise incomparable modulo $n$. In this paper, we analyze the group structure on $\mathfrak A_n$ that arises from the construction of a deformation of multiplication described by V. M. Buchstaber. We present a geometric realization of this group in the ambient space $\mathbb R^n\supset\mathbb Z^n$ and find its generators and relations.
@article{TRSPY_2014_286_a10,
     author = {S. Yu. Tsarev},
     title = {Geometric aspects of a~deformation of the standard addition on integer lattices},
     journal = {Informatics and Automation},
     pages = {231--240},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a10/}
}
TY  - JOUR
AU  - S. Yu. Tsarev
TI  - Geometric aspects of a~deformation of the standard addition on integer lattices
JO  - Informatics and Automation
PY  - 2014
SP  - 231
EP  - 240
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a10/
LA  - ru
ID  - TRSPY_2014_286_a10
ER  - 
%0 Journal Article
%A S. Yu. Tsarev
%T Geometric aspects of a~deformation of the standard addition on integer lattices
%J Informatics and Automation
%D 2014
%P 231-240
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a10/
%G ru
%F TRSPY_2014_286_a10
S. Yu. Tsarev. Geometric aspects of a~deformation of the standard addition on integer lattices. Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 231-240. http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a10/

[1] Buchstaber V.M., “Semigroups of maps into groups, operator doubles, and complex cobordisms”, Topics in topology and mathematical physics, AMS Transl. Ser. 2, 170, Amer. Math. Soc., Providence, RI, 1995, 9–31 | MR | Zbl

[2] Kassel K., Kvantovye gruppy, Fazis, M., 1999

[3] Kokseter G.S.M., Mozer U.O.Dzh., Porozhdayuschie elementy i opredelyayuschie sootnosheniya diskretnykh grupp, Nauka, M., 1980 | MR

[4] Magnus V., Karras A., Soliter D., Kombinatornaya teoriya grupp: Predstavlenie grupp v terminakh obrazuyuschikh i sootnoshenii, Nauka, M., 1974 | MR | Zbl

[5] Poyarkov A.P., Garber A.I., “O perestanovochnykh mnogogrannikakh”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 2006, no. 2, 3–8 | MR | Zbl