Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2014_286_a1, author = {V. G. Bardakov and V. V. Vershinin and J. Wu}, title = {On {Cohen} braids}, journal = {Informatics and Automation}, pages = {22--39}, publisher = {mathdoc}, volume = {286}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a1/} }
V. G. Bardakov; V. V. Vershinin; J. Wu. On Cohen braids. Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 22-39. http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a1/
[1] Bardakov V.G., “K teorii grupp kos”, Mat. sb., 183:6 (1992), 3–42 | Zbl
[2] Bardakov V.G., Mikhailov R.V., “Ob approksimatsionnykh svoistvakh grupp zatseplenii”, Sib. mat. zhurn., 48:3 (2007), 485–495 | MR | Zbl
[3] Bardakov V.G., Mikhailov R., Vershinin V.V., Wu J., “Brunnian Braids on surfaces”, Algebr. Geom. Topol., 12 (2012), 1607–1648 | DOI | MR | Zbl
[4] Berrick A.J., Cohen F.R., Wong Y.L., Wu J., “Configurations, braids, and homotopy groups”, J. Amer. Math. Soc., 19 (2006), 265–326 | DOI | MR | Zbl
[5] Cohen F.R., “On combinatorial group theory in homotopy”, Homotopy theory and its applications (Cocoyoc (Mexico), 1993), Contemp. Math., 188, Amer. Math. Soc., Providence, RI, 1995, 57–63 | DOI | MR
[6] Cohen F.R., On combinatorial group theory in homotopy. I, Preprint, Univ. Rochester, 1999 | MR
[7] Kalfagianni E., Lin X.-S., “Milnor and finite type invariants of plat-closures”, Math. Res. Lett., 5:3 (1998), 293–304 | DOI | MR | Zbl
[8] Kawauchi A., A survey of knot theory, Birkhäuser, Basel, 1996 | MR | Zbl
[9] Makanin G.S., “Ob odnom analoge teoremy Aleksandera–Markova”, Izv. AN SSSR. Ser. mat., 53:1 (1989), 200–210 | MR
[10] Vershinin V.V., “Braids, their properties and generalizations”, Handbook of algebra, V. 4, Elsevier/North-Holland, Amsterdam, 2006, 427–465 | DOI | MR | Zbl
[11] Vershinin V.V., “On the inverse braid monoid”, Topology Appl., 156:6 (2009), 1153–1166 | DOI | MR | Zbl
[12] Wu J., On maps from loop suspensions to loop spaces and the shuffle relations on the Cohen groups, Mem. Amer. Math. Soc., 180, no. 851, Amer. Math. Soc., Providence, RI, 2006 | MR