On Cohen braids
Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 22-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a general connected surface $M$ and an arbitrary braid $\alpha$ from the surface braid group $B_{n-1}(M)$, we study the system of equations $d_1\beta=\dots=d_n\beta=\alpha$, where the operation $d_i$ is the removal of the $i$th strand. We prove that for $M\neq S^2$ and $M\neq\mathbb R\mathrm P^2$, this system of equations has a solution $\beta\in B_n(M)$ if and only if $d_1\alpha=\dots=d_{n-1}\alpha$. We call the set of braids satisfying the last system of equations Cohen braids. We study Cohen braids and prove that they form a subgroup. We also construct a set of generators for the group of Cohen braids. In the cases of the sphere and the projective plane we give some examples for a small number of strands.
@article{TRSPY_2014_286_a1,
     author = {V. G. Bardakov and V. V. Vershinin and J. Wu},
     title = {On {Cohen} braids},
     journal = {Informatics and Automation},
     pages = {22--39},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a1/}
}
TY  - JOUR
AU  - V. G. Bardakov
AU  - V. V. Vershinin
AU  - J. Wu
TI  - On Cohen braids
JO  - Informatics and Automation
PY  - 2014
SP  - 22
EP  - 39
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a1/
LA  - ru
ID  - TRSPY_2014_286_a1
ER  - 
%0 Journal Article
%A V. G. Bardakov
%A V. V. Vershinin
%A J. Wu
%T On Cohen braids
%J Informatics and Automation
%D 2014
%P 22-39
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a1/
%G ru
%F TRSPY_2014_286_a1
V. G. Bardakov; V. V. Vershinin; J. Wu. On Cohen braids. Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 22-39. http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a1/

[1] Bardakov V.G., “K teorii grupp kos”, Mat. sb., 183:6 (1992), 3–42 | Zbl

[2] Bardakov V.G., Mikhailov R.V., “Ob approksimatsionnykh svoistvakh grupp zatseplenii”, Sib. mat. zhurn., 48:3 (2007), 485–495 | MR | Zbl

[3] Bardakov V.G., Mikhailov R., Vershinin V.V., Wu J., “Brunnian Braids on surfaces”, Algebr. Geom. Topol., 12 (2012), 1607–1648 | DOI | MR | Zbl

[4] Berrick A.J., Cohen F.R., Wong Y.L., Wu J., “Configurations, braids, and homotopy groups”, J. Amer. Math. Soc., 19 (2006), 265–326 | DOI | MR | Zbl

[5] Cohen F.R., “On combinatorial group theory in homotopy”, Homotopy theory and its applications (Cocoyoc (Mexico), 1993), Contemp. Math., 188, Amer. Math. Soc., Providence, RI, 1995, 57–63 | DOI | MR

[6] Cohen F.R., On combinatorial group theory in homotopy. I, Preprint, Univ. Rochester, 1999 | MR

[7] Kalfagianni E., Lin X.-S., “Milnor and finite type invariants of plat-closures”, Math. Res. Lett., 5:3 (1998), 293–304 | DOI | MR | Zbl

[8] Kawauchi A., A survey of knot theory, Birkhäuser, Basel, 1996 | MR | Zbl

[9] Makanin G.S., “Ob odnom analoge teoremy Aleksandera–Markova”, Izv. AN SSSR. Ser. mat., 53:1 (1989), 200–210 | MR

[10] Vershinin V.V., “Braids, their properties and generalizations”, Handbook of algebra, V. 4, Elsevier/North-Holland, Amsterdam, 2006, 427–465 | DOI | MR | Zbl

[11] Vershinin V.V., “On the inverse braid monoid”, Topology Appl., 156:6 (2009), 1153–1166 | DOI | MR | Zbl

[12] Wu J., On maps from loop suspensions to loop spaces and the shuffle relations on the Cohen groups, Mem. Amer. Math. Soc., 180, no. 851, Amer. Math. Soc., Providence, RI, 2006 | MR