Asymptotically homogeneous solutions to differential equations with homogeneous polynomial symbols with respect to a~multiplicative one-parameter group
Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 107-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study solutions to partial differential equations with homogeneous polynomial symbols with respect to a multiplicative one-parameter transformation group such that all eigenvalues of the infinitesimal matrix are positive. The infinitesimal matrix may contain a nilpotent part. In the asymptotic scale of regularly varying functions, we find conditions under which such differential equations have asymptotically homogeneous solutions in the critical case.
@article{TRSPY_2014_285_a7,
     author = {Yu. N. Drozhzhinov and B. I. Zavialov},
     title = {Asymptotically homogeneous solutions to differential equations with homogeneous polynomial symbols with respect to a~multiplicative one-parameter group},
     journal = {Informatics and Automation},
     pages = {107--127},
     publisher = {mathdoc},
     volume = {285},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a7/}
}
TY  - JOUR
AU  - Yu. N. Drozhzhinov
AU  - B. I. Zavialov
TI  - Asymptotically homogeneous solutions to differential equations with homogeneous polynomial symbols with respect to a~multiplicative one-parameter group
JO  - Informatics and Automation
PY  - 2014
SP  - 107
EP  - 127
VL  - 285
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a7/
LA  - ru
ID  - TRSPY_2014_285_a7
ER  - 
%0 Journal Article
%A Yu. N. Drozhzhinov
%A B. I. Zavialov
%T Asymptotically homogeneous solutions to differential equations with homogeneous polynomial symbols with respect to a~multiplicative one-parameter group
%J Informatics and Automation
%D 2014
%P 107-127
%V 285
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a7/
%G ru
%F TRSPY_2014_285_a7
Yu. N. Drozhzhinov; B. I. Zavialov. Asymptotically homogeneous solutions to differential equations with homogeneous polynomial symbols with respect to a~multiplicative one-parameter group. Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 107-127. http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a7/

[1] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl

[2] von Grudzinski O., Quasihomogeneous distributions, North-Holland Math. Stud., 165, North-Holland, Amsterdam, 1991 | MR | Zbl

[3] Drozhzhinov Yu.N., Zavyalov B.I., “Asimptoticheski kvaziodnorodnye obobschennye funktsii v nachale koordinat”, Ufimsk. mat. zhurn., 1:4 (2009), 33–66 | MR | Zbl

[4] Drozhzhinov Yu.N., Zavyalov B.I., “Asimptoticheski odnorodnye obobschennye funktsii po spetsialnym gruppam preobrazovanii”, Mat. sb., 200:6 (2009), 23–66 | DOI | MR | Zbl

[5] Drozhzhinov Yu.N., Zavyalov B.I., “Asimptoticheski odnorodnye obobschennye funktsii v nule i uravneniya v svertkakh s yadrami, simvoly kotorykh — kvaziodnorodnye mnogochleny”, DAN, 426:3 (2009), 300–303 | MR | Zbl

[6] Gelfand I.M., Shilov G.E., Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1959

[7] Drozhzhinov Yu.N., Zavyalov B.I., “Obobschennye funktsii, asimptoticheski odnorodnye po traektoriyam, opredelyaemym odnoparametricheskimi gruppami”, Izv. RAN. Ser. mat., 76:3 (2012), 39–92 | DOI | MR | Zbl

[8] Drozhzhinov Yu.N., Zavyalov B.I., “Obobschennye funktsii, asimptoticheski odnorodnye otnositelno odnoparametricheskoi gruppy v nachale koordinat”, Ufimsk. mat. zhurn., 5:1 (2013), 17–35 | Zbl

[9] Vladimirov V.S., Drozhzhinov Yu.N., Zavyalov B.I., Mnogomernye tauberovy teoremy dlya obobschennykh funktsii, Nauka, M., 1986 | MR

[10] Drozhzhinov Yu.N., Zavialov B.I., “Homogeneous generalized functions with respect to one-parametric group”, p-Adic Numbers Ultrametric Anal. Appl., 4:1 (2012), 64–75 | DOI | MR | Zbl

[11] Hörmander L., “On the division of distributions by polynomials”, Ark. Mat., 3 (1958), 555–568 | DOI | MR | Zbl