Invariant domains of holomorphy: Twenty years later
Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 253-263.

Voir la notice de l'article provenant de la source Math-Net.Ru

This review is devoted to the domains of holomorphy invariant under holomorphic actions of real Lie groups. We have collected here the results on this subject obtained during the last twenty years, which have passed since the publication of the first review of the authors on this topic. This first review was mainly devoted to the case of compact transformation groups, while the first two sections of the present review deal mostly with noncompact groups. In Section 3 we discuss the problem of rigidity of automorphism groups of domains of holomorphy invariant under compact transformation groups.
@article{TRSPY_2014_285_a16,
     author = {A. G. Sergeev and Xiangyu Zhou},
     title = {Invariant domains of holomorphy: {Twenty} years later},
     journal = {Informatics and Automation},
     pages = {253--263},
     publisher = {mathdoc},
     volume = {285},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a16/}
}
TY  - JOUR
AU  - A. G. Sergeev
AU  - Xiangyu Zhou
TI  - Invariant domains of holomorphy: Twenty years later
JO  - Informatics and Automation
PY  - 2014
SP  - 253
EP  - 263
VL  - 285
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a16/
LA  - ru
ID  - TRSPY_2014_285_a16
ER  - 
%0 Journal Article
%A A. G. Sergeev
%A Xiangyu Zhou
%T Invariant domains of holomorphy: Twenty years later
%J Informatics and Automation
%D 2014
%P 253-263
%V 285
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a16/
%G ru
%F TRSPY_2014_285_a16
A. G. Sergeev; Xiangyu Zhou. Invariant domains of holomorphy: Twenty years later. Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 253-263. http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a16/

[1] Barrett D.E., “Holomorphic equivalence and proper mapping of bounded Reinhardt domains not containing the origin”, Comment. Math. Helv., 59 (1984), 550–564 | DOI | MR

[2] Bedford E., “Holomorphic mapping of products of annuli in $\mathbf C^n$”, Pac. J. Math., 87:2 (1980), 271–281 | DOI | MR | Zbl

[3] Deng F., Zhou X., “Rigidity of automorphism groups of invariant domains in certain Stein homogeneous manifolds”, C. R., Math., Acad. Sci. Paris., 350 (2012), 417–420 | DOI | MR | Zbl

[4] Den F., Chzhou Sch., “Zhestkost grupp avtomorfizmov invariantnykh oblastei na odnorodnykh prostranstvakh Shteina”, Izv. RAN. Ser. mat., 78:1 (2014), 37–64 | DOI | Zbl

[5] Fels G., Geatti L., “Invariant domains in complex symmetric spaces”, J. reine angew. Math., 454 (1994), 97–118 | MR | Zbl

[6] Heinzner P., “Geometric invariant theory on Stein spaces”, Math. Ann., 289 (1991), 631–662 | DOI | MR | Zbl

[7] Kiselman C.O., “The partial Legendre transformation for plurisubharmonic functions”, Invent. math., 49 (1978), 137–148 | DOI | MR | Zbl

[8] Kruzhilin N.G., “Golomorfnye avtomorfizmy giperbolicheskikh oblastei Reinkharta”, Izv. AN SSSR. Ser. mat., 52:1 (1988), 16–40 | MR | Zbl

[9] Loeb J.-J., “Action d'une forme réelle d'un groupe de Lie complexe sur les fonctions plurisousharmoniques”, Ann. Inst. Fourier., 35:4 (1985), 59–97 | DOI | MR | Zbl

[10] Loeb J.-J., “Pseudo-convexité des ouverts invariants et convexité geodésique dans certains espaces symétriques”, Séminaire d'analyse P. Lelong–P. Dolbeault–H. Skoda. Années 1983/1984, Lect. Notes Math., 1198, Springer, Berlin, 1986, 172–190 | DOI | MR

[11] Luna D., “Slices étales”, Bull. Soc. math. France., 33 (1973), 81–105 | MR | Zbl

[12] Sergeev A.G., Khaintsner P., “Rasshirennyi matrichnyi disk yavlyaetsya oblastyu golomorfnosti”, Izv. AN SSSR. Ser. mat., 55:3 (1991), 647–657 | MR

[13] Sergeev A.G., Chzhou Sch., “Ob invariantnykh oblastyakh golomorfnosti”, Tr. MIAN., 203 (1994), 159–172 | Zbl

[14] Sergeev A.G., Chzhou Sch., “Gipoteza o rasshirennoi trube buduschego”, Tr. MIAN, 228, 2000, 32–51 | MR | Zbl

[15] Shimizu S., “Automorphisms and equivalence of bounded Reinhardt domains not containing the origin”, Tohoku Math. J. Ser. 2, 40:1 (1988), 119–152 | DOI | MR | Zbl

[16] Snow D.M., “Reductive group actions on Stein spaces”, Math. Ann., 259 (1982), 79–97 | DOI | MR | Zbl

[17] Szöke R., “Complex structures on tangent bundles of Riemannian manifolds”, Math. Ann., 291 (1991), 409–428 | DOI | MR | Zbl

[18] Szöke R., “Automorphisms of certain Stein manifolds”, Math. Z., 219:3 (1995), 357–385 | DOI | MR | Zbl

[19] V.S. Vladimirov, “Nikolai Nikolaevich Bogolyubov — matematik Bozhei milostyu”, Matematicheskie sobytiya KhKh veka, Fazis, M., 2003, 119–143

[20] Wolf J.A., “The geometry and structure of isotropy irreducible homogeneous spaces”, Acta math., 120 (1968), 59–148 ; Correction Acta math., 152 (1984), 141–142 | DOI | MR | Zbl | DOI | MR | Zbl

[21] Zhou X., “On orbit connectedness, orbit convexity, and envelopes of holomorphy”, Izv. RAN. Ser. mat., 58:2 (1994), 196–205 | MR

[22] Zhou X., “On invariant domains in certain complex homogeneous spaces”, Ann. Inst. Fourier, 47:4 (1997), 1101–1115 | DOI | MR

[23] Zhou X., “The extended future tube is a domain of holomorphy”, Math. Res. Lett., 5 (1998), 185–190 | DOI | MR | Zbl

[24] Chzhou Sch., “Dokazatelstvo gipotezy o rasshirennoi trube buduschego”, Izv. RAN. Ser. mat., 62:1 (1998), 211–224 | DOI | MR

[25] Chzhou Sch., “Invariantnaya versiya lemmy Kartana i kompleksifikatsii invariantnykh oblastei golomorfnosti”, DAN, 366:5 (1999), 608–612 | MR