Feynman formulas as a~method of averaging random Hamiltonians
Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 232-243.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a method for finding the mathematical expectation of random unbounded operators in a Hilbert space. The method is based on averaging random one-parameter semigroups by means of the Feynman–Chernoff formula. We also consider an application of this method to the description of various operations that assign quantum Hamiltonians to the classical Hamilton functions.
@article{TRSPY_2014_285_a14,
     author = {Yu. N. Orlov and V. Zh. Sakbaev and O. G. Smolyanov},
     title = {Feynman formulas as a~method of averaging random {Hamiltonians}},
     journal = {Informatics and Automation},
     pages = {232--243},
     publisher = {mathdoc},
     volume = {285},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a14/}
}
TY  - JOUR
AU  - Yu. N. Orlov
AU  - V. Zh. Sakbaev
AU  - O. G. Smolyanov
TI  - Feynman formulas as a~method of averaging random Hamiltonians
JO  - Informatics and Automation
PY  - 2014
SP  - 232
EP  - 243
VL  - 285
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a14/
LA  - ru
ID  - TRSPY_2014_285_a14
ER  - 
%0 Journal Article
%A Yu. N. Orlov
%A V. Zh. Sakbaev
%A O. G. Smolyanov
%T Feynman formulas as a~method of averaging random Hamiltonians
%J Informatics and Automation
%D 2014
%P 232-243
%V 285
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a14/
%G ru
%F TRSPY_2014_285_a14
Yu. N. Orlov; V. Zh. Sakbaev; O. G. Smolyanov. Feynman formulas as a~method of averaging random Hamiltonians. Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 232-243. http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a14/

[1] Berezin F.A., Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | MR | Zbl

[2] Dodonov V.V., Manko V.I., Skarzhinskii V.D., “Neodnoznachnosti variatsionnogo opisaniya klassicheskikh sistem i problema kvantovaniya”, Tr. FIAN, 152 (1983), 37–89 | MR

[3] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[4] Maslov V.P., Operatornye metody, Nauka, M., 1973 | MR

[5] Ogun Dzh.O., Orlov Yu.N., Sakbaev V.Zh., O preobrazovanii prostranstva nachalnykh dannykh dlya zadachi Koshi s osobennostyami resheniya tipa vzryva, Preprint No87, In-t prikl. mat. im. M.V. Keldysha, M., 2012 | Zbl

[6] Orlov Yu.N., Sakbaev V.Zh., Smolyanov O.G., “Skorost skhodimosti feinmanovskikh approksimatsii polugrupp, porozhdaemykh gamiltonianom ostsillyatora”, TMF, 172:1 (2012), 122–137 | DOI | Zbl

[7] Sakbaev V.Zh., “O mnogoznachnykh otobrazheniyakh, zadavaemykh regulyarizatsiei uravneniya Shrëdingera s vyrozhdeniem”, ZhVMiMF, 46:4 (2006), 683–699 | MR | Zbl

[8] Sakbaev V.Zh., Zadacha Koshi dlya lineinogo differentsialnogo uravneniya s vyrozhdeniem i usrednenie approksimiruyuschikh ee regulyarizatsii, Sovr. matematika. Fund. napr., 43, Ros. un-t druzhby narodov, M., 2012 | MR

[9] Chernoff P.R., “Note on product formulas for operator semigroups”, J. Funct. Anal., 2 (1968), 238–242 | DOI | MR | Zbl

[10] Smolyanov O.G., Tokarev A.G., Truman A., “Hamiltonian Feynman path integrals via the Chernoff formula”, J. Math. Phys., 43:10 (2002), 5161–5171 | DOI | MR | Zbl

[11] Smolyanov O.G., von Weizsäcker H., Wittich O., “Chernoff's theorem and discrete time approximations of Brownian motion on manifolds”, Potential Anal., 26:1 (2007), 1–29 | DOI | MR | Zbl

[12] Tartar L., “Memory effects and homogenization”, Arch. Ration. Mech. Anal., 111:2 (1990), 121–133 | DOI | MR | Zbl

[13] Yosida K., Hewitt E., “Finitely additive measures”, Trans. Amer. Math. Soc., 72 (1952), 46–66 | DOI | MR | Zbl