On a~field equation generating a~new class of particular solutions to the Yang--Mills equations
Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 207-220.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a pseudo-Euclidean space, a field equation (system of equations) is considered that is invariant under orthogonal (from the group $\mathrm O(p,q)$) coordinate transformations and invariant under gauge transformations from the spinor group $\mathrm{Pin}(p,q)$. The solutions to the field equation are connected with a class of new particular solutions to the Yang–Mills equations.
@article{TRSPY_2014_285_a12,
     author = {N. G. Marchuk},
     title = {On a~field equation generating a~new class of particular solutions to the {Yang--Mills} equations},
     journal = {Informatics and Automation},
     pages = {207--220},
     publisher = {mathdoc},
     volume = {285},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a12/}
}
TY  - JOUR
AU  - N. G. Marchuk
TI  - On a~field equation generating a~new class of particular solutions to the Yang--Mills equations
JO  - Informatics and Automation
PY  - 2014
SP  - 207
EP  - 220
VL  - 285
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a12/
LA  - ru
ID  - TRSPY_2014_285_a12
ER  - 
%0 Journal Article
%A N. G. Marchuk
%T On a~field equation generating a~new class of particular solutions to the Yang--Mills equations
%J Informatics and Automation
%D 2014
%P 207-220
%V 285
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a12/
%G ru
%F TRSPY_2014_285_a12
N. G. Marchuk. On a~field equation generating a~new class of particular solutions to the Yang--Mills equations. Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 207-220. http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a12/

[1] Cornwell J.F., Group theory in physics: An introduction, Acad. Press, San Diego, CA, 1997 | MR | Zbl

[2] Marchuk N.G., Uravneniya teorii polya i algebry Klifforda, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2009

[3] Marchuk N., “Mass generation mechanism for spin-(1/2) fermions in Dirac–Yang–Mills model equations with a symplectic gauge symmetry”, Nuovo Cimento B., 125:10 (2010), 1249–1256 | MR

[4] Marchuk N., Field theory equations, CreateSpace Independent Publ. Platform, Scott Valley, CA, 2012

[5] Marchuk N.G., Shirokov D.S., Vvedenie v teoriyu algebr Klifforda, Fazis, M., 2012

[6] Shirokov D.S., “A classification of Lie algebras of pseudo-unitary groups in the techniques of Clifford algebras”, Adv. Appl. Clifford Algebr., 20:2 (2010), 411–425 | DOI | MR | Zbl

[7] Shirokov D.S., “On some relations between spinor and orthogonal groups”, p-Adic Numbers Ultrametric Anal. Appl., 3:3 (2011), 212–218 | DOI | MR | Zbl