@article{TRSPY_2014_285_a12,
author = {N. G. Marchuk},
title = {On a~field equation generating a~new class of particular solutions to the {Yang{\textendash}Mills} equations},
journal = {Informatics and Automation},
pages = {207--220},
year = {2014},
volume = {285},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a12/}
}
N. G. Marchuk. On a field equation generating a new class of particular solutions to the Yang–Mills equations. Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 207-220. http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a12/
[1] Cornwell J.F., Group theory in physics: An introduction, Acad. Press, San Diego, CA, 1997 | MR | Zbl
[2] Marchuk N.G., Uravneniya teorii polya i algebry Klifforda, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2009
[3] Marchuk N., “Mass generation mechanism for spin-(1/2) fermions in Dirac–Yang–Mills model equations with a symplectic gauge symmetry”, Nuovo Cimento B., 125:10 (2010), 1249–1256 | MR
[4] Marchuk N., Field theory equations, CreateSpace Independent Publ. Platform, Scott Valley, CA, 2012
[5] Marchuk N.G., Shirokov D.S., Vvedenie v teoriyu algebr Klifforda, Fazis, M., 2012
[6] Shirokov D.S., “A classification of Lie algebras of pseudo-unitary groups in the techniques of Clifford algebras”, Adv. Appl. Clifford Algebr., 20:2 (2010), 411–425 | DOI | MR | Zbl
[7] Shirokov D.S., “On some relations between spinor and orthogonal groups”, p-Adic Numbers Ultrametric Anal. Appl., 3:3 (2011), 212–218 | DOI | MR | Zbl