$p$-Adic wavelets and their applications
Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 166-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theory of $p$-adic wavelets is presented. One-dimensional and multidimensional wavelet bases and their relation to the spectral theory of pseudodifferential operators are discussed. For the first time, bases of compactly supported eigenvectors for $p$-adic pseudodifferential operators were considered by V. S. Vladimirov. In contrast to real wavelets, $p$-adic wavelets are related to the group representation theory; namely, the frames of $p$-adic wavelets are the orbits of $p$-adic transformation groups (systems of coherent states). A $p$-adic multiresolution analysis is considered and is shown to be a particular case of the construction of a $p$-adic wavelet frame as an orbit of the action of the affine group.
@article{TRSPY_2014_285_a11,
     author = {S. V. Kozyrev and A. Yu. Khrennikov and V. M. Shelkovich},
     title = {$p${-Adic} wavelets and their applications},
     journal = {Informatics and Automation},
     pages = {166--206},
     publisher = {mathdoc},
     volume = {285},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a11/}
}
TY  - JOUR
AU  - S. V. Kozyrev
AU  - A. Yu. Khrennikov
AU  - V. M. Shelkovich
TI  - $p$-Adic wavelets and their applications
JO  - Informatics and Automation
PY  - 2014
SP  - 166
EP  - 206
VL  - 285
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a11/
LA  - ru
ID  - TRSPY_2014_285_a11
ER  - 
%0 Journal Article
%A S. V. Kozyrev
%A A. Yu. Khrennikov
%A V. M. Shelkovich
%T $p$-Adic wavelets and their applications
%J Informatics and Automation
%D 2014
%P 166-206
%V 285
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a11/
%G ru
%F TRSPY_2014_285_a11
S. V. Kozyrev; A. Yu. Khrennikov; V. M. Shelkovich. $p$-Adic wavelets and their applications. Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 166-206. http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a11/

[1] Albeverio S., Evdokimov S., Skopina M., “$p$-Adic nonorthogonal wavelet bases”, Tr. MIAN, 265, 2009, 7–18 | MR | Zbl

[2] Albeverio S., Evdokimov S., Skopina M., “$p$-Adic multiresolution analysis and wavelet frames”, J. Fourier Anal. Appl., 16:5 (2010), 693–714, arXiv: 0802.1079v1 [math.CA] | DOI | MR | Zbl

[3] Albeverio S., Khrennikov A.Yu., Shelkovich V.M., “Harmonic analysis in the $p$-adic Lizorkin spaces: fractional operators, pseudo-differential equations, $p$-adic wavelets, Tauberian theorems”, J. Fourier Anal. Appl., 12:4 (2006), 393–425 | DOI | MR | Zbl

[4] Albeverio S., Khrennikov A.Yu., Shelkovich V.M., “Pseudo-differential operators in the $p$-adic Lizorkin space”, $p$-Adic mathematical physics, Proc. 2nd Int. Conf., Belgrade, Sept. 15–21, 2005, AIP Conf. Proc., 826, eds. A.Yu. Khrennikov, Z. Rakić, I.V. Volovich, Amer. Inst. Phys., Melville, NY, 2006, 195–205 | DOI | MR | Zbl

[5] Albeverio S., Khrennikov A.Yu., Shelkovich V.M., “$p$-Adicheskie polulineinye evolyutsionnye psevdodifferentsialnye uravneniya v prostranstvakh Lizorkina”, DAN, 415:3 (2007), 295–299 | MR | Zbl

[6] Albeverio S., Khrennikov A.Yu., Shelkovich V.M., Theory of $p$-adic distributions: Linear and nonlinear models, LMS Lect. Note Ser., 370, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl

[7] Albeverio S., Kozyrev S.V., Coincidence of the continuous and discrete $p$-adic wavelet transforms, E-print, 2007, arXiv: math-ph/0702010

[8] Albeverio S., Kozyrev S.V., “Multidimensional ultrametric pseudodifferential equations”, Tr. MIAN, 265, 2009, 19–35, arXiv: 0708.2074 [math-ph] | MR | Zbl

[9] Albeverio S., Kozyrev S.V., “Frames of $p$-adic wavelets and orbits of the affine group”, p-Adic Numbers Ultrametric Anal. Appl., 1:1 (2009), 18–33, arXiv: 0801.4713 [math-ph] | DOI | MR | Zbl

[10] Albeverio S., Kozyrev S.V., “Multidimensional basis of $p$-adic wavelets and representation theory”, p-Adic Numbers Ultrametric Anal. Appl., 1:3 (2009), 181–189, arXiv: 0903.0461 [math-ph] | DOI | MR | Zbl

[11] Albeverio S., Kozyrev S.V., “Multidimensional $p$-adic wavelets for the deformed metric”, p-Adic Numbers Ultrametric Anal. Appl., 2:4 (2010), 265–277, arXiv: 1105.1524 [math.FA] | DOI | MR | Zbl

[12] Albeverio S., Kuzhel S., Torba S., “$p$-Adic Schrödinger-type operator with point interactions”, J. Math. Anal. Appl., 338:2 (2008), 1267–1281 | DOI | MR | Zbl

[13] Aref'eva I.Ya., Dragovich B., Frampton P.H., Volovich I.V., “The wave function of the Universe and $p$-adic gravity”, Int. J. Mod. Phys. A, 6:24 (1991), 4341–4358 | DOI | MR | Zbl

[14] Aref'eva I.Ya., Dragović B.G., Volovich I.V., “On the adelic string amplitudes”, Phys. Lett. B., 209:4 (1988), 445–450 | DOI | MR

[15] Aref'eva I., Frampton P.H., “Beyond Planck energy to non-Archimedean geometry”, Mod. Phys. Lett. A, 6:4 (1991), 313–316 | DOI | MR | Zbl

[16] Aref'eva Ya., Volovich I.V., “Strings, gravity and $p$-adic space-time”, Quantum gravity, Proc. Fourth Seminar, Moscow, May 25–29, 1987, eds. M.A. Markov, V.A. Berezin, V.P. Frolov, World Sci., Singapore, 1988, 409–422 | MR

[17] Benedetto J.J., Benedetto R.L., “A wavelet theory for local fields and related groups”, J. Geom. Anal., 14:3 (2004), 423–456 | DOI | MR | Zbl

[18] Benedetto R.L., “Examples of wavelets for local fields”, Wavelets, frames, and operator theory, Proc. Workshop, College Park, MD, 2003, Contemp. Math., 345, Amer. Math. Soc., Providence, RI, 2004, 27–47 | DOI | MR | Zbl

[19] Cartier P., “Harmonic analysis on trees”, Harmonic analysis on homogeneous spaces, Proc. Symp. Pure Math., Williamstown, MA, 1972, Proc. Symp. Pure Math., 26, Amer. Math. Soc., Providence, RI, 1973, 419–424 | DOI | MR

[20] Cartier P., “Representations of $p$-adic groups: A survey”, Automorphic forms, representations and $L$-functions, Proc. Symp. Pure Math., Corvallis, OR, 1977, Part 1, Proc. Symp. Pure Math., 33, Amer. Math. Soc., Providence, RI, 1979, 111–155 | DOI | MR

[21] Casas-Sánchez O., Zúñiga-Galindo W.A., “Riesz kernels and pseudodifferential operators attached to quadratic forms over $p$-adic fields”, p-Adic Numbers Ultrametric Anal. Appl., 5:3 (2013), 177–193 | DOI | MR | Zbl

[22] Chacón-Cortes L.F., Zúñiga-Galindo W.A., “Nonlocal operators, parabolic-type equations, and ultrametric random walks”, J. Math. Phys., 54:11 (2013), 113503 | DOI | MR | Zbl

[23] Daubechies I., Ten lectures on wavelets, CBMS-NSF Reg. Conf. Ser. Appl. Math., 61, SIAM, Philadelphia, PA, 1992 ; Dobeshi I., Desyat lektsii po veivletam, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001 | MR | Zbl

[24] Dragovich B.G., “On signature change in $p$-adic space-times”, Mod. Phys. Lett. A., 6:25 (1991), 2301–2307 | DOI | MR

[25] Dragovich B., Khrennikov A.Yu., Kozyrev S.V., Volovich I.V., “On $p$-adic mathematical physics”, p-Adic Numbers Ultrametric Anal. Appl., 1:1 (2009), 1–17 | DOI | MR | Zbl

[26] Dragovich B., Nesic Lj., “On $p$-adic numbers in gravity”, Balkan Phys. Lett., 6 (1998), 78–81 | MR

[27] Farkov Yu.A., “Ortogonalnye veivlety s kompaktnymi nositelyami na lokalno kompaktnykh abelevykh gruppakh”, Izv. RAN. Ser. mat., 69:3 (2005), 193–220 | DOI | MR | Zbl

[28] Farkov Yu.A., “Multiresolution analysis and wavelets on Vilenkin groups”, Facta Univ. Ser. Electron. Energ., 21:3 (2008), 309–325 | DOI

[29] Farkov Yu.A., “Biortogonalnye vspleski na gruppakh Vilenkina”, Tr. MIAN, 265, 2009, 110–124 | MR | Zbl

[30] Farkov Yu.A., “On wavelets related to the Walsh series”, J. Approx. Theory, 161:1 (2009), 259–279 | DOI | MR | Zbl

[31] Farkov Yu.A., “Wavelets and frames based on Walsh–Dirichlet type kernels”, Commun. Math. Appl., 1:1 (2010), 27–46 | MR | Zbl

[32] Freund P.G.O., Witten E., “Adelic string amplitudes”, Phys. Lett. B, 199:2 (1987), 191–194 | DOI | MR

[33] Gelfand I.M., Graev M.I., Pyatetskii-Shapiro I.I., Teoriya predstavlenii i avtomorfnye funktsii, Obobschennye funktsii, 6, Nauka, M., 1966 | MR

[34] Golubov B.I., “O modifitsirovannom silnom dvoichnom integrale i proizvodnoi”, Mat. sb., 193:4 (2002), 37–60 | DOI | MR | Zbl

[35] Golubov B.I., “Dvoichnyi analog tauberovoi teoremy Vinera i smezhnye voprosy”, Izv. RAN. Ser. mat., 67:1 (2003), 33–58 | DOI | MR | Zbl

[36] Golubov B.I., “Modifitsirovannyi dvoichnyi integral i proizvodnaya drobnogo poryadka na $\mathbb R_+$”, Funkts. analiz i ego pril., 39:2 (2005), 64–70 | DOI | MR | Zbl

[37] Golubov B.I., “Modifitsirovannyi dvoichnyi integral i proizvodnaya drobnogo poryadka na $\mathbb R_+$”, Mat. zametki, 79:2 (2006), 213–233 | DOI | MR | Zbl

[38] B.I. Golubov, A.V. Efimov, V.A. Skvortsov, Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, 2-e izd., Izd-vo LKI, M., 2008 | MR

[39] Gröchenig K., Madych W.R., “Multiresolution analysis, Haar bases, and self-similar tilings of $R^n$”, IEEE Trans. Inf. Theory, 38:2 (1992), 556–568 | DOI | MR | Zbl

[40] Haar A., “Zur Theorie der orthogonalen Funktionensysteme”, Math. Ann., 69 (1910), 331–371 | DOI | MR | Zbl

[41] Kaiser G., A friendly guide to wavelets, Birkhäuser, Boston, 1994 | MR | Zbl

[42] Kashin B.S., Saakyan A.A., Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl

[43] Khrennikov A.Yu., “Fundamentalnye resheniya nad polem $p$-adicheskikh chisel”, Algebra i analiz, 4:3 (1992), 248–266 | MR | Zbl

[44] Khrennikov A.Yu., $p$-Adic valued distributions in mathematical physics, Kluwer, Dordrecht, 1994 | MR | Zbl

[45] Khrennikov A.Yu., Non-Archimedean analysis: Quantum paradoxes, dynamical systems and biological models, Kluwer, Dordrecht, 1997 | MR | Zbl

[46] Khrennikov A.Yu., Nearkhimedov analiz i ego prilozheniya, Fizmatlit, M., 2003 | MR

[47] Khrennikov A.Yu., Kozyrev S.V., “Wavelets on ultrametric spaces”, Appl. Comput. Harmon. Anal., 19:1 (2005), 61–76 | DOI | MR | Zbl

[48] Khrennikov A.Yu., Kozyrev S.V., “Wavelets and the Cauchy problem for the Schrödinger equation on analytic ultrametric space”, Mathematical modeling of wave phenomena, Proc. 2nd Conf., Växjö, Sweden, Aug. 14–19, 2005, AIP Conf. Proc., 834, eds. B. Nilsson, L. Fishman, Amer. Inst. Phys., Melville, NY, 2006, 344–350 | DOI | MR

[49] Khrennikov A.Yu., Kozyrev S.V., “Ultrametric random field”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 9:2 (2006), 199–213, arXiv: math/0603584 [math.PR] | DOI | MR | Zbl

[50] Khrennikov A.Yu., Kozyrev S.V., Oleschko K., Jaramillo A.G., de Jesús Correa López M., “Application of $p$-adic analysis to time series”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16:4 (2013), 1350030 | DOI | MR | Zbl

[51] Khrennikov A.Yu., Shelkovich V.M., “Distributional asymptotics and $p$-adic Tauberian and Shannon–Kotelnikov theorems”, Asymptotic Anal., 46:2 (2006), 163–187 | MR | Zbl

[52] Khrennikov A.Yu., Shelkovich V.M., $p$-Adic multidimensional wavelets and their application to $p$-adic pseudo-differential operators, E-print, 2006, arXiv: math-ph/0612049

[53] Khrennikov A.Yu., Shelkovich V.M., “Nekhaarovskie $p$-adicheskie vspleski i psevdodifferentsialnye operatory”, DAN, 418:2 (2008), 167–170 | MR | Zbl

[54] Khrennikov A.Yu., Shelkovich V.M., “An infinite family of $p$-adic non-Haar wavelet bases and pseudo-differential operators”, p-Adic Numbers Ultrametric Anal. Appl., 1:3 (2009), 204–216 | DOI | MR | Zbl

[55] Khrennikov A.Yu., Shelkovich V.M., “Non-Haar $p$-adic wavelets and their application to pseudo-differential operators and equations”, Appl. Comput. Harmon. Anal., 28:1 (2010), 1–23, arXiv: 0808.3338v1 [math-ph] | DOI | MR | Zbl

[56] Khrennikov A.Yu., Shelkovich V.M., Skopina M., “$p$-Adic orthogonal wavelet bases”, p-Adic Numbers Ultrametric Anal. Appl., 1:2 (2009), 145–156 | DOI | MR | Zbl

[57] Khrennikov A.Yu., Shelkovich V.M., Skopina M., “$p$-Adic refinable functions and MRA-based wavelets”, J. Approx. Theory, 161:1 (2009), 226–238 | DOI | MR | Zbl

[58] Khrennikov A.Yu., Shelkovich V.M., van der Walt J.H., “Adelic multiresolution analysis, construction of wavelet bases and pseudo-differential operators”, J. Fourier Anal. Appl., 19:6 (2013), 1323–1358 | DOI | MR

[59] King E.J., Skopina M.A., “Quincunx multiresolution analysis for $L^2(\mathbb Q_2^2)$”, p-Adic Numbers Ultrametric Anal. Appl., 2:3 (2010), 222–231 | DOI | MR | Zbl

[60] Klauder J.R., Sudarshan E.C.G., Fundamentals of quantum optics, Benjamin, New York, 1968 | MR

[61] Kochubei A.N., “Operator tipa Shrëdingera nad polem $p$-adicheskikh chisel”, TMF, 86:3 (1991), 323–333 | MR

[62] Kochubei A.N., “Parabolicheskie uravneniya nad polem $p$-adicheskikh chisel”, Izv. AN SSSR. Ser. mat., 55:6 (1991), 1312–1330

[63] Kochubei A.N., “Operator differentsirovaniya na podmnozhestvakh polya $p$-adicheskikh chisel”, Izv. RAN. Ser. mat., 56:5 (1992), 1021–1039 | MR

[64] Kochubei A.N., “Additive and multiplicative fractional differentiations over the field of $p$-adic numbers”, $p$-Adic functional analysis, Lect. Notes Pure Appl. Math., 192, eds. W.H. Schikhof et al., M. Dekker, New York, 1997, 275–280 | MR | Zbl

[65] Kochubei A.N., “Fundamentalnye resheniya psevdodifferentsialnykh uravnenii, svyazannykh s $p$-adicheskimi kvadratichnymi formami”, Izv. RAN. Ser. mat., 62:6 (1998), 103–124 | DOI | MR | Zbl

[66] Kochubei A.N., Pseudo-differential equations and stochastics over non-Archimedean fields, M. Dekker, New York, 2001 | MR | Zbl

[67] Kochubei A.N., “A non-Archimedean wave equation”, Pac. J. Math., 235:2 (2008), 245–261 | DOI | MR | Zbl

[68] Konyagin S.V., Shparlinski I.E., Character sums with exponential functions and their applications, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[69] Kosyak A.V., Khrennikov A.Yu., Shelkovich V.M., “Bazisy vspleskov na adelyakh”, DAN, 442:4 (2012), 446–450 | MR | Zbl

[70] Kosyak A.V., Khrennikov A.Yu., Shelkovich V.M., “Psevdodifferentsialnye operatory na adelyakh i bazisy vspleskov”, DAN, 444:3 (2012), 253–257 | MR | Zbl

[71] Kozyrev S.V., “Teoriya vspleskov kak $p$-adicheskii spektralnyi analiz”, Izv. RAN. Ser. mat., 66:2 (2002), 149–158, arXiv: math-ph/0012019 | DOI | MR | Zbl

[72] Kozyrev S.V., “$p$-Adicheskie psevdodifferentsialnye operatory: metody i prilozheniya”, Tr. MIAN, 245, 2004, 154–165 | MR | Zbl

[73] Kozyrev S.V., “$p$-adicheskie psevdodifferentsialnye operatory i $p$-adicheskie vspleski”, TMF, 138:3 (2004), 383–394, arXiv: math-ph/0303045 | DOI | MR | Zbl

[74] Kozyrev S.V., “Vspleski i spektralnyi analiz ultrametricheskikh psevdodifferentsialnykh operatorov”, Mat. sb., 198:1 (2007), 103–126, arXiv: math-ph/0412082 | DOI | MR | Zbl

[75] Kozyrev S.V., Metody i prilozheniya ultrametricheskogo i $p$-adicheskogo analiza: ot teorii vspleskov do biofiziki, Sovr. probl. matematiki, 12, MIAN, M., 2008 | DOI | DOI

[76] Kozyrev S.V., “K ultrametricheskoi teorii turbulentnosti”, TMF, 157:3 (2008), 413–424, arXiv: 0803.2719 [math-ph] | DOI | MR | Zbl

[77] Kozyrev S.V., Khrennikov A.Yu., “Psevdodifferentsialnye operatory na ultrametricheskikh prostranstvakh i ultrametricheskie vspleski”, Izv. RAN. Ser. mat., 69:5 (2005), 133–148, arXiv: math-ph/0412062 | DOI | MR | Zbl

[78] Kozyrev S.V., Khrennikov A.Yu., “Prostranstvennaya lokalizatsiya dlya svobodnoi chastitsy v ultrametricheskoi kvantovoi mekhanike”, DAN, 411:3 (2006), 319–322 | MR | Zbl

[79] Kozyrev S.V., Khrennikov A.Yu., “$p$-Adicheskie integralnye operatory v bazisakh vspleskov”, DAN, 437:4 (2011), 457–461 | MR | Zbl

[80] Kozyrev S.V., Osipov V.Al., Avetisov V.A., “Nondegenerate ultrametric diffusion”, J. Math. Phys., 46:6 (2005), 063302 | DOI | MR | Zbl

[81] Kuzhel S., Torba S., “$p$-Adic fractional differential operators with point interactions”, Methods Funct. Anal. Topol., 13:2 (2007), 169–180 | MR | Zbl

[82] Lang W.C., “Orthogonal wavelets on the Cantor dyadic group”, SIAM J. Math. Anal., 27 (1996), 305–312 | DOI | MR | Zbl

[83] Lang W.C., “Wavelet analysis on the Cantor dyadic group”, Houston J. Math., 24 (1998), 533–544 | MR | Zbl

[84] Lizorkin P.I., “Obobschennoe liuvillevskoe differentsirovanie i funktsionalnye prostranstva $L_p^r(E_n)$. Teoremy vlozheniya”, Mat. sb., 60:3 (1963), 325–353 | MR | Zbl

[85] Lizorkin P.I., “Operatory, svyazannye s drobnym differentsirovaniem, i klassy differentsiruemykh funktsii”, Tr. MIAN, 117, 1972, 212–243 | MR | Zbl

[86] Mallat S., “An efficient image representation for multiscale analysis”, Topical Meeting on Machine Vision, Incline Village, Nevada, 1987, Opt. Soc. Amer., Washington D.C., 1987, 172–175

[87] Mallat S., Multiresolution representation and wavelets, PhD Thesis, Univ. Pennsylvania, Philadelphia, PA, 1988

[88] Meyer Y., “Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs”, Séminaire Bourbaki 1985/1986, Exp. 662, Astérisque, 145/146, Soc. math. France, Paris, 1987, 209–223 | MR

[89] Meyer Y., Ondelettes et fonctions splines, Sémin. équations dériv. partielles 1986–1987, 6, École Polytech., Palaiseau, 1987 | MR | Zbl

[90] Meyer Y., Wavelets and operators, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[91] Neretin Yu.A., “O kombinatornykh analogakh gruppy diffeomorfizmov okruzhnosti”, Izv. RAN. Ser. mat., 56:5 (1992), 1072–1085 | MR | Zbl

[92] Novikov I.Ya., Protasov V.Yu., Skopina M.A., Teoriya vspleskov, Fizmatlit, M., 2005 | MR

[93] Novikov I.Ya., Skopina M.A., “Pochemu v raznykh strukturakh bazisy Khaara odinakovye?”, Mat. zametki, 91:6 (2012), 950–953 | DOI | Zbl

[94] Olshanskii G.I., “Klassifikatsiya neprivodimykh predstavlenii grupp avtomorfizmov derevev Bryua–Titsa”, Funkts. analiz i ego pril., 11:1 (1977), 32–42 | MR | Zbl

[95] Perelomov A.M., Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1987 | MR

[96] Protasov V.Yu., Farkov Yu.A., “Diadicheskie veivlety i masshtabiruyuschie funktsii na polupryamoi”, Mat. sb., 197:10 (2006), 129–160 | DOI | MR | Zbl

[97] Rodionov E.A., Farkov Yu.A., “Otsenki gladkosti diadicheskikh ortogonalnykh vspleskov tipa Dobeshi”, Mat. zametki, 86:3 (2009), 429–444 | DOI | MR | Zbl

[98] Rodríguez-Vega J.J., Zúñiga-Galindo W.A., “Taibleson operators, $p$-adic parabolic equations and ultrametric diffusion”, Pac. J. Math., 237:2 (2008), 327–347 | DOI | MR | Zbl

[99] Serre J.-P., Arbres, amalgames, SL$_2$, Astérisque, 46, Soc. Math. France, Paris, 1977 ; Серр Ж.-П., “Деревья, амальгамы и SL$_2$”, Математика, 18:1 (1974), 3–51 ; 2, 3–27. | MR | Zbl | Zbl

[100] Serre J.-P., Trees, Springer, Berlin, 1980, 2003 | MR | Zbl

[101] Shelkovich V., Skopina M., “$p$-Adic Haar multiresolution analysis and pseudo-differential operators”, J. Fourier Anal. Appl., 15:3 (2009), 366–393 | DOI | MR | Zbl

[102] Taibleson M., “Harmonic analysis on $n$-dimensional vector spaces over local fields. I: Basic results on fractional integration”, Math. Ann., 176 (1968), 191–207 | DOI | MR

[103] Taibleson M.H., Fourier analysis on local fields, Princeton Univ. Press, Princeton, NJ, 1975 | MR | Zbl

[104] Torba S.M., Zúñiga-Galindo W.A., “Parabolic type equations and Markov stochastic processes on adeles”, J. Fourier Anal. Appl., 19:4 (2013), 792–835 | DOI | MR

[105] Vladimirov V.S., “Obobschennye funktsii nad polem $p$-adicheskikh chisel”, UMN, 43:5 (1988), 17–53 | MR | Zbl

[106] Vladimirov V.S., “O spektre nekotorykh psevdodifferentsialnykh operatorov nad polem $p$-adicheskikh chisel”, Algebra i analiz, 2:6 (1990), 107–124 | MR

[107] Vladimirov V.S., “O spektralnykh svoistvakh $p$-adicheskikh psevdodifferentsialnykh operatorov tipa Shrëdingera”, Izv. RAN. Ser. mat., 56:4 (1992), 770–789 | MR | Zbl

[108] Vladimirov V.S., “K obosnovaniyu adelnoi formuly Freinda–Vittena dlya chetyrekhtochechnykh amplitud Venetsiano”, TMF, 94:3 (1993), 355–367 | MR | Zbl

[109] Vladimirov V.S., “Adelnye formuly Freinda–Vittena dlya amplitud Venetsiano i Virasoro–Shapiro”, UMN, 48:6 (1993), 3–38 | MR | Zbl

[110] Vladimirov V.S., “On the Freund–Witten adelic formula for Veneziano amplitudes”, Lett. Math. Phys., 27:2 (1993), 123–131 | DOI | MR | Zbl

[111] Vladimirov V.S., “Ob adelnykh formulakh dlya chetyrekhtochechnykh amplitud Venetsiano i Virasoro–Shapiro”, DAN, 333:6 (1993), 717–721 | MR | Zbl

[112] Vladimirov V.S., Volovich I.V., “Superanaliz. I: Differentsialnoe ischislenie”, TMF, 59:1 (1984), 3–27 | MR | Zbl

[113] Vladimirov V.S., Volovich I.V., “Superanaliz. II: Integralnoe ischislenie”, TMF, 60:2 (1984), 169–198 | MR | Zbl

[114] Vladimirov V.S., Volovich I.V., “$p$-Adicheskaya kvantovaya mekhanika”, DAN SSSR, 302:2 (1988), 320–323 | MR | Zbl

[115] Vladimirov V.S., Volovich I.V., “A vacuum state in $p$-adic quantum mechanics”, Phys. Lett. B, 217:4 (1989), 411–415 | DOI | MR

[116] Vladimirov V.S., Volovich I.V., “$p$-Adic quantum mechanics”, Commun. Math. Phys., 123:4 (1989), 659–676 | DOI | MR | Zbl

[117] Vladimirov V.S., Volovich I.V., “$p$-Adic Schrödinger-type equation”, Lett. Math. Phys., 18:1 (1989), 43–53 | DOI | MR | Zbl

[118] Vladimirov V.S., Volovich I.V., Zelenov E.I., “Spektralnaya teoriya v $p$-adicheskoi kvantovoi mekhanike i teoriya predstavlenii”, DAN SSSR, 310:2 (1990), 272–276 | MR | Zbl

[119] Vladimirov V.S., Volovich I.V., Zelenov E.I., “Spektralnaya teoriya v $p$-adicheskoi kvantovoi mekhanike i teoriya predstavlenii”, Izv. AN SSSR. Ser. mat., 54:2 (1990), 275–302 | MR | Zbl

[120] Vladimirov V.S., Volovich I.V., Zelenov E.I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[121] Volovich I.V., “$p$-Adicheskoe prostranstvo-vremya i teoriya strun”, TMF, 71:3 (1987), 337–340 | MR | Zbl

[122] Volovich I.V., “$p$-Adic string”, Classical Quantum Gravity, 4 (1987), L83–L87 | DOI | MR

[123] Zuniga-Galindo W.A., “Fundamental solutions of pseudo-differential operators over $p$-adic fields”, Rend. Semin. Mat. Univ. Padova, 109 (2003), 241–245 | MR | Zbl

[124] Zuniga-Galindo W.A., “Pseudo-differential equations connected with $p$-adic forms and local zeta functions”, Bull. Aust. Math. Soc., 70:1 (2004), 73–86 | DOI | MR | Zbl

[125] Zúñiga-Galindo W.A., “Local zeta functions and fundamental solutions for pseudo-differential operators over $p$-adic fields”, p-Adic Numbers Ultrametric Anal. Appl., 3:4 (2011), 344–358 | DOI | MR | Zbl