Equivalence of two definitions of a~generalized $L_p$ solution to the initial-boundary value problem for the wave equation
Informatics and Automation, Function spaces and related problems of analysis, Tome 284 (2014), pp. 163-168

Voir la notice de l'article provenant de la source Math-Net.Ru

In our previous papers, we introduced the notion of a generalized solution to the initial-boundary value problem for the wave equation with a boundary function $\mu(t)$ such that the integral $\int_0^T(T-t)|\mu(t)|^p\,dt$ exists. Here we prove that this solution is a unique solution to the problem in $L_p$ that satisfies the corresponding integral identity.
@article{TRSPY_2014_284_a9,
     author = {V. A. Il'in and A. A. Kuleshov},
     title = {Equivalence of two definitions of a~generalized $L_p$ solution to the initial-boundary value problem for the wave equation},
     journal = {Informatics and Automation},
     pages = {163--168},
     publisher = {mathdoc},
     volume = {284},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a9/}
}
TY  - JOUR
AU  - V. A. Il'in
AU  - A. A. Kuleshov
TI  - Equivalence of two definitions of a~generalized $L_p$ solution to the initial-boundary value problem for the wave equation
JO  - Informatics and Automation
PY  - 2014
SP  - 163
EP  - 168
VL  - 284
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a9/
LA  - ru
ID  - TRSPY_2014_284_a9
ER  - 
%0 Journal Article
%A V. A. Il'in
%A A. A. Kuleshov
%T Equivalence of two definitions of a~generalized $L_p$ solution to the initial-boundary value problem for the wave equation
%J Informatics and Automation
%D 2014
%P 163-168
%V 284
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a9/
%G ru
%F TRSPY_2014_284_a9
V. A. Il'in; A. A. Kuleshov. Equivalence of two definitions of a~generalized $L_p$ solution to the initial-boundary value problem for the wave equation. Informatics and Automation, Function spaces and related problems of analysis, Tome 284 (2014), pp. 163-168. http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a9/