Optimal reconstruction of a~Banach function space from a~cone of nonnegative functions
Informatics and Automation, Function spaces and related problems of analysis, Tome 284 (2014), pp. 142-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of constructing a minimal Banach function space containing a given cone of nonnegative measurable functions. For the associate function norm of the norm of an optimal space, we obtain general formulas and specify them in the case of a cone defined by an integral representation. We also consider the similar problem of constructing an optimal rearrangement invariant space and compare the descriptions obtained.
@article{TRSPY_2014_284_a7,
     author = {M. L. Goldman and P. P. Zabreiko},
     title = {Optimal reconstruction of {a~Banach} function space from a~cone of nonnegative functions},
     journal = {Informatics and Automation},
     pages = {142--156},
     publisher = {mathdoc},
     volume = {284},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a7/}
}
TY  - JOUR
AU  - M. L. Goldman
AU  - P. P. Zabreiko
TI  - Optimal reconstruction of a~Banach function space from a~cone of nonnegative functions
JO  - Informatics and Automation
PY  - 2014
SP  - 142
EP  - 156
VL  - 284
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a7/
LA  - ru
ID  - TRSPY_2014_284_a7
ER  - 
%0 Journal Article
%A M. L. Goldman
%A P. P. Zabreiko
%T Optimal reconstruction of a~Banach function space from a~cone of nonnegative functions
%J Informatics and Automation
%D 2014
%P 142-156
%V 284
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a7/
%G ru
%F TRSPY_2014_284_a7
M. L. Goldman; P. P. Zabreiko. Optimal reconstruction of a~Banach function space from a~cone of nonnegative functions. Informatics and Automation, Function spaces and related problems of analysis, Tome 284 (2014), pp. 142-156. http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a7/

[1] Bennett C., Sharpley R., Interpolation of operators, Acad. Press, New York, 1988 | MR

[2] Krein S.G., Petunin Yu.I., Semenov E.M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[3] Zabreiko P.P., Nelineinye integralnye operatory, Trudy seminara po funktsionalnomu analizu, 8, Izd-vo Voronezh. un-ta, Voronezh, 1966 | MR

[4] Zabreiko P.P., Issledovaniya po teorii integralnykh operatorov v idealnykh prostranstvakh funktsii, Dis. ... dokt. fiz.-mat. nauk, Voronezh. gos. un-t, Voronezh, 1968

[5] Zabreiko P.P., “Idealnye prostranstva funktsii. I”, Vestn. Yarosl. un-ta, 8 (1974), 12–52 | MR

[6] Goldman M.L. Rearrangement invariant envelopes of generalized Besov, Sobolev, and Calderon spaces // The interaction of analysis and geometry. Providence, RI: Amer. Math. Soc., 2007. P. 53–81. (Contemp. Math.; V. 424). | MR

[7] Goldman M. L., “Ob optimalnykh vlozheniyakh obobschennykh potentsialov Besselya i Rissa”, Tr. MIAN, 269, 2010, 91–111 | MR | Zbl

[8] Goldman M.L., Haroske D.D., “Estimates for continuity envelopes and approximation numbers of Bessel potentials”, J. Approx. Theory, 172 (2013), 58–85 | DOI | MR | Zbl

[9] Burenkov V.I., Goldman M.L., “Vychislenie normy polozhitelnogo operatora na konuse monotonnykh funktsii”, Tr. MIAN, 210, 1995, 65–89 | MR | Zbl

[10] Sawyer E., “Boundedness of classical operators on classical Lorentz spaces”, Stud. math., 96:2 (1990), 145–158 | MR | Zbl