To the Sobolev embedding theorem for the limiting exponent
Informatics and Automation, Function spaces and related problems of analysis, Tome 284 (2014), pp. 89-104

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish embeddings of the Sobolev space $W_p^s$ and the space $B_{pq}^s$ (with the limiting exponent) in certain spaces of locally integrable functions of zero smoothness. This refines the embedding of the Sobolev space in the Lorentz and Lorentz–Zygmund spaces. Similar problems are considered for the case of irregular domains and for the potential space.
@article{TRSPY_2014_284_a4,
     author = {O. V. Besov},
     title = {To the {Sobolev} embedding theorem for the limiting exponent},
     journal = {Informatics and Automation},
     pages = {89--104},
     publisher = {mathdoc},
     volume = {284},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a4/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - To the Sobolev embedding theorem for the limiting exponent
JO  - Informatics and Automation
PY  - 2014
SP  - 89
EP  - 104
VL  - 284
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a4/
LA  - ru
ID  - TRSPY_2014_284_a4
ER  - 
%0 Journal Article
%A O. V. Besov
%T To the Sobolev embedding theorem for the limiting exponent
%J Informatics and Automation
%D 2014
%P 89-104
%V 284
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a4/
%G ru
%F TRSPY_2014_284_a4
O. V. Besov. To the Sobolev embedding theorem for the limiting exponent. Informatics and Automation, Function spaces and related problems of analysis, Tome 284 (2014), pp. 89-104. http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a4/