On necessary optimality conditions for infinite-horizon economic growth problems with locally unbounded instantaneous utility function
Informatics and Automation, Function spaces and related problems of analysis, Tome 284 (2014), pp. 56-88

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of infinite-horizon optimal control problems that arise in studying models of optimal dynamic allocation of economic resources. In a typical problem of that kind the initial state is fixed, no constraints are imposed on the behavior of the admissible trajectories at infinity, and the objective functional is given by a discounted improper integral. Earlier, for such problems, S. M. Aseev and A. V. Kryazhimskiy in 2004–2007 and jointly with the author in 2012 developed a method of finite-horizon approximations and obtained variants of the Pontryagin maximum principle that guarantee normality of the problem and contain an explicit formula for the adjoint variable. In the present paper those results are extended to a more general situation where the instantaneous utility function need not be locally bounded from below. As an important illustrative example, we carry out a rigorous mathematical investigation of the transitional dynamics in the neoclassical model of optimal economic growth.
@article{TRSPY_2014_284_a3,
     author = {K. O. Besov},
     title = {On necessary optimality conditions for infinite-horizon economic growth problems with locally unbounded instantaneous utility function},
     journal = {Informatics and Automation},
     pages = {56--88},
     publisher = {mathdoc},
     volume = {284},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a3/}
}
TY  - JOUR
AU  - K. O. Besov
TI  - On necessary optimality conditions for infinite-horizon economic growth problems with locally unbounded instantaneous utility function
JO  - Informatics and Automation
PY  - 2014
SP  - 56
EP  - 88
VL  - 284
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a3/
LA  - ru
ID  - TRSPY_2014_284_a3
ER  - 
%0 Journal Article
%A K. O. Besov
%T On necessary optimality conditions for infinite-horizon economic growth problems with locally unbounded instantaneous utility function
%J Informatics and Automation
%D 2014
%P 56-88
%V 284
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a3/
%G ru
%F TRSPY_2014_284_a3
K. O. Besov. On necessary optimality conditions for infinite-horizon economic growth problems with locally unbounded instantaneous utility function. Informatics and Automation, Function spaces and related problems of analysis, Tome 284 (2014), pp. 56-88. http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a3/