Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2014_284_a10, author = {G. A. Kalyabin}, title = {On two-sided and asymptotic estimates for the norms of embedding operators of $\mathring W_2^n(-1,1)$ into $L_q(d\mu)$}, journal = {Informatics and Automation}, pages = {169--175}, publisher = {mathdoc}, volume = {284}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a10/} }
TY - JOUR AU - G. A. Kalyabin TI - On two-sided and asymptotic estimates for the norms of embedding operators of $\mathring W_2^n(-1,1)$ into $L_q(d\mu)$ JO - Informatics and Automation PY - 2014 SP - 169 EP - 175 VL - 284 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a10/ LA - ru ID - TRSPY_2014_284_a10 ER -
%0 Journal Article %A G. A. Kalyabin %T On two-sided and asymptotic estimates for the norms of embedding operators of $\mathring W_2^n(-1,1)$ into $L_q(d\mu)$ %J Informatics and Automation %D 2014 %P 169-175 %V 284 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a10/ %G ru %F TRSPY_2014_284_a10
G. A. Kalyabin. On two-sided and asymptotic estimates for the norms of embedding operators of $\mathring W_2^n(-1,1)$ into $L_q(d\mu)$. Informatics and Automation, Function spaces and related problems of analysis, Tome 284 (2014), pp. 169-175. http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a10/