. Conditions on the measure $\mu$ are obtained under which the ratio of the above estimates tends to $1$ as $n\to\infty$, and asymptotic formulas are presented for these norms in regular cases. As a corollary, an asymptotic formula (as $n\to\infty$) is established for the minimum eigenvalues $\lambda_{1,n,\beta}$, $\beta>0$, of the boundary value problems $(-d^2/dx^2)^nu(x)=\lambda|x|^{\beta-1}u(x)$, $x\in(-1,1)$, $u^{(k)}(\pm1)=0$, $k\in\{0,1,\dots ,n-1\}$.
@article{TRSPY_2014_284_a10,
author = {G. A. Kalyabin},
title = {On two-sided and asymptotic estimates for the norms of embedding operators of $\mathring W_2^n(-1,1)$ into $L_q(d\mu)$},
journal = {Informatics and Automation},
pages = {169--175},
year = {2014},
volume = {284},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a10/}
}
TY - JOUR AU - G. A. Kalyabin TI - On two-sided and asymptotic estimates for the norms of embedding operators of $\mathring W_2^n(-1,1)$ into $L_q(d\mu)$ JO - Informatics and Automation PY - 2014 SP - 169 EP - 175 VL - 284 UR - http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a10/ LA - ru ID - TRSPY_2014_284_a10 ER -
G. A. Kalyabin. On two-sided and asymptotic estimates for the norms of embedding operators of $\mathring W_2^n(-1,1)$ into $L_q(d\mu)$. Informatics and Automation, Function spaces and related problems of analysis, Tome 284 (2014), pp. 169-175. http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a10/
[1] Magaril-Ilyaev G.G., Tikhomirov V.M., Vypuklyi analiz i ego prilozheniya, Editorial URSS, M., 2000
[2] Kalyabin G.A., “Nekotorye zadachi dlya prostranstv Soboleva na polupryamoi”, Tr. MIAN, 255, 2006, 161–169 | MR
[3] Kalyabin G.A., “Tochnye otsenki dlya proizvodnykh funktsii iz klassov Soboleva $\mathring W_2^r(-1,1)$”, Tr. MIAN, 269, 2010, 143–149 | MR | Zbl
[4] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR
[5] Polia G., Segë G., Zadachi i teoremy iz analiza, Ch. 1, Nauka, M., 1978
[6] Prudnikov A.P., Brychkov Yu.A., Marichev O.I., Integraly i ryady: Elementarnye funktsii, Nauka, M., 1981 | MR | Zbl
[7] Natanson I.P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR
[8] Böttcher A., Widom H., “From Toeplitz eigenvalues through Green's kernels to higher-order Wirtinger–Sobolev inequalities”, The extended field of operator theory, Oper. Theory Adv. Appl., 171, Birkhäuser, Basel, 2007, 73–87 | DOI | MR