Nonlinear approximations of classes of periodic functions of many variables
Informatics and Automation, Function spaces and related problems of analysis, Tome 284 (2014), pp. 8-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

Order-sharp estimates are established for the best $N$-term approximations of functions in the classes $\mathrm B^{sm}_{pq}(\mathbb T^k)$ and $\mathrm L^{sm}_{pq}(\mathbb T^k)$ of Nikol'skii–Besov and Lizorkin–Triebel types with respect to the multiple system $\widetilde {\mathcal W}^m$ of Meyer wavelets in the metric of $L_r(\mathbb T^k)$ for various relations between the parameters $s,p,q,r$, and $m$ ($s=(s_1,\dots,s_n)\in\mathbb R^n_+$, $1\leq p,q,r\leq\infty$, $m=(m_1,\dots,m_n)\in\mathbb N^n$, and $k=m_1+\dots+m_n$). The proof of upper estimates is based on variants of the so-called greedy algorithms.
@article{TRSPY_2014_284_a1,
     author = {D. B. Bazarkhanov},
     title = {Nonlinear approximations of classes of periodic functions of many variables},
     journal = {Informatics and Automation},
     pages = {8--37},
     publisher = {mathdoc},
     volume = {284},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a1/}
}
TY  - JOUR
AU  - D. B. Bazarkhanov
TI  - Nonlinear approximations of classes of periodic functions of many variables
JO  - Informatics and Automation
PY  - 2014
SP  - 8
EP  - 37
VL  - 284
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a1/
LA  - ru
ID  - TRSPY_2014_284_a1
ER  - 
%0 Journal Article
%A D. B. Bazarkhanov
%T Nonlinear approximations of classes of periodic functions of many variables
%J Informatics and Automation
%D 2014
%P 8-37
%V 284
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a1/
%G ru
%F TRSPY_2014_284_a1
D. B. Bazarkhanov. Nonlinear approximations of classes of periodic functions of many variables. Informatics and Automation, Function spaces and related problems of analysis, Tome 284 (2014), pp. 8-37. http://geodesic.mathdoc.fr/item/TRSPY_2014_284_a1/

[1] Stechkin S.B., “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, DAN SSSR, 102:1 (1955), 37–40 | Zbl

[2] DeVore R.A., “Nonlinear approximation”, Acta numer., 7 (1998), 51–150 | DOI | MR | Zbl

[3] Temlyakov V.N., “Nonlinear methods of approximation”, Found. Comput. Math., 3:1 (2003), 33–107 | DOI | MR | Zbl

[4] Temlyakov V.N., “Greedy approximation”, Acta numer., 17 (2008), 235–409 | DOI | MR | Zbl

[5] Bazarkhanov D.B., “Priblizhenie vspleskami i poperechniki Fure klassov periodicheskikh funktsii mnogikh peremennykh. I”, Tr. MIAN, 269, 2010, 8–30 | MR | Zbl

[6] Meyer Y., Wavelets and operators, Cambridge Stud. Adv. Math, 37, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[7] Bazarkhanov D.B., “Predstavleniya i kharakterizatsii nekotorykh funktsionalnykh prostranstv”, Mat. zhurn. Almaty, 12:3 (2012), 41–49

[8] Bazarkhanov D.B., “Priblizhenie vspleskami i poperechniki Fure klassov periodicheskikh funktsii mnogikh peremennykh. II”, Anal. math., 38:4 (2012), 249–289 | DOI | MR | Zbl

[9] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, 2-e izd., Nauka, M., 1977 | MR

[10] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, 2-e izd., Nauka, M., 1996 | MR

[11] Amanov T.I., Prostranstva differentsiruemykh funktsii s dominiruyuschei smeshannoi proizvodnoi, Nauka, Alma-Ata, 1976 | MR

[12] Schmeisser H.-J., Triebel H., Topics in Fourier analysis and function spaces, J. Wiley Sons, Chichester, 1987 | MR | Zbl

[13] Hansen M., Vybiral J., “The Jawerth–Franke embedding of spaces with dominating mixed smoothness”, Georgian Math. J., 16:4 (2009), 667–682 | MR | Zbl

[14] Temlyakov V.N., “Greedy algorithms with regard to multivariate systems with special structure”, Constr. Approx., 16:3 (2000), 399–425 | DOI | MR | Zbl

[15] Hansen M., Sickel W., “Best $m$-term approximation and tensor product of Sobolev and Besov spaces—the case of non-compact embeddings”, East J. Approx., 16:4 (2010), 345–388 | MR | Zbl

[16] Hansen M., Sickel W., “Best $m$-term approximation and Sobolev–Besov spaces of dominating mixed smoothness—the case of compact embeddings”, Constr. Approx., 36:1 (2012), 1–51 | DOI | MR | Zbl

[17] Romanyuk A.S., “Priblizhenie klassov periodicheskikh funktsii mnogikh peremennykh”, Mat. zametki, 71:1 (2002), 109–121 | DOI | MR | Zbl

[18] Romanyuk A.S., “Nailuchshie $M$-chlennye trigonometricheskie priblizheniya klassov Besova periodicheskikh funktsii mnogikh peremennykh”, Izv. RAN. Ser. mat., 67:2 (2003), 61–100 | DOI | MR | Zbl

[19] Romanyuk A.S., “Bilineinye i trigonometricheskie priblizheniya klassov Besova $B_{p,\theta }^r$ periodicheskikh funktsii mnogikh peremennykh”, Izv. RAN. Ser. mat., 70:2 (2006), 69–98 | DOI | MR | Zbl

[20] Romanyuk A.S., “Nailuchshie trigonometricheskie priblizheniya klassov periodicheskikh funktsii mnogikh peremennykh v ravnomernoi metrike”, Mat. zametki, 82:2 (2007), 247–261 | DOI | MR | Zbl

[21] Bazarkhanov D.B., “Otsenki nekotorykh approksimativnykh kharakteristik prostranstv Nikolskogo–Besova obobschennoi smeshannoi gladkosti”, DAN, 426:1 (2009), 11–14 | MR | Zbl