Boundedness and compactness of a~supremum-involving integral operator
Informatics and Automation, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 142-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain criteria of boundedness and compactness of a supremum-involving integral operator in Lebesgue spaces on a half-axis.
@article{TRSPY_2013_283_a9,
     author = {D. V. Prokhorov},
     title = {Boundedness and compactness of a~supremum-involving integral operator},
     journal = {Informatics and Automation},
     pages = {142--154},
     publisher = {mathdoc},
     volume = {283},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a9/}
}
TY  - JOUR
AU  - D. V. Prokhorov
TI  - Boundedness and compactness of a~supremum-involving integral operator
JO  - Informatics and Automation
PY  - 2013
SP  - 142
EP  - 154
VL  - 283
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a9/
LA  - ru
ID  - TRSPY_2013_283_a9
ER  - 
%0 Journal Article
%A D. V. Prokhorov
%T Boundedness and compactness of a~supremum-involving integral operator
%J Informatics and Automation
%D 2013
%P 142-154
%V 283
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a9/
%G ru
%F TRSPY_2013_283_a9
D. V. Prokhorov. Boundedness and compactness of a~supremum-involving integral operator. Informatics and Automation, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 142-154. http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a9/

[1] Oinarov R., “Vesovye neravenstva dlya odnogo klassa integralnykh operatorov”, DAN SSSR, 319:5 (1991), 1076–1078

[2] Bloom S., Kerman R., “Weighted norm inequalities for operators of Hardy type”, Proc. Amer. Math. Soc., 113:1 (1991), 135–141 | DOI | MR | Zbl

[3] Oinarov R., “Dvustoronnie otsenki normy nekotorykh klassov integralnykh operatorov”, Tr. MIAN, 204, 1993, 240–250 | Zbl

[4] Stepanov V.D., “Weighted norm inequalities of Hardy type for a class of integral operators”, J. London Math. Soc. Ser. 2, 50:1 (1994), 105–120 | DOI | MR | Zbl

[5] Kufner A., Persson L.-E., Weighted inequalities of Hardy type, World Scientific, Singapore, 2003 | MR | Zbl

[6] Gogatishvili A., Pick L., “A reduction theorem for supremum operators”, J. Comput. Appl. Math., 208:1 (2007), 270–279 | DOI | MR | Zbl

[7] Prokhorov D.V., Stepanov V.D., “O supremalnykh operatorakh”, DAN., 439:1 (2011), 28–29 | MR | Zbl

[8] Stepanov V.D., “On a supremum operator”, Spectral theory, function spaces and inequalities: New technique and recent trends, Oper. Theory: Adv. Appl., 219, Springer, Berlin, 2012, 233–242 | MR | Zbl

[9] Gogatishvili A., Opic B., Pick L., “Weighted inequalities for Hardy-type operators involving suprema”, Collect. math., 57:3 (2006), 227–255 | MR | Zbl

[10] Prokhorov D.V., “Lorentz norm inequalities for the Hardy operator involving suprema”, Proc. Amer. Math. Soc., 140:5 (2012), 1585–1592 | DOI | MR | Zbl

[11] Pernecká E., Pick L., “Compactness of Hardy operators involving suprema”, Boll. Unione Mat. Ital. Ser. 9, 6:1 (2013), 219–252 | MR | Zbl

[12] Prokhorov D.V., “Inequalities for Riemann–Liouville operator involving suprema”, Collect. math., 61:3 (2010), 263–276 | DOI | MR | Zbl