Upper estimates for the approximation numbers of the generalized Laplace transform
Informatics and Automation, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 267-287.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Laplace-transform-type operator $\mathcal L$ acting in the Lebesgue spaces of real functions on the half-axis is considered. Sufficient conditions under which $\mathcal L$ belongs to some Schatten-type classes are found. Upper asymptotic estimates for the approximation numbers of $\mathcal L$ are obtained.
@article{TRSPY_2013_283_a17,
     author = {E. P. Ushakova},
     title = {Upper estimates for the approximation numbers of the generalized {Laplace} transform},
     journal = {Informatics and Automation},
     pages = {267--287},
     publisher = {mathdoc},
     volume = {283},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a17/}
}
TY  - JOUR
AU  - E. P. Ushakova
TI  - Upper estimates for the approximation numbers of the generalized Laplace transform
JO  - Informatics and Automation
PY  - 2013
SP  - 267
EP  - 287
VL  - 283
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a17/
LA  - ru
ID  - TRSPY_2013_283_a17
ER  - 
%0 Journal Article
%A E. P. Ushakova
%T Upper estimates for the approximation numbers of the generalized Laplace transform
%J Informatics and Automation
%D 2013
%P 267-287
%V 283
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a17/
%G ru
%F TRSPY_2013_283_a17
E. P. Ushakova. Upper estimates for the approximation numbers of the generalized Laplace transform. Informatics and Automation, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 267-287. http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a17/

[1] Allakhverdiev D.E., “O skorosti priblizheniya vpolne nepreryvnykh operatorov konechnomernymi operatorami”, Uchen. zap. Azerb. un-ta, 1957, no. 2, 27–35

[2] Bennett C., Sharpley R., Interpolation of operators, Pure Appl. Math., 129, Acad. Press, New York, 1988 | MR | Zbl

[3] Birman M.Sh., Solomyak M.Z., “Otsenki singulyarnykh chisel integralnykh operatorov”, UMN., 32:1 (1977), 17–84 | MR | Zbl

[4] Birman M.Sh., Solomyak M.Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980 | MR

[5] Edmunds D.E., Evans W.D., Harris D.J., “Approximation numbers of certain Volterra integral operators”, J. London Math. Soc. Ser. 2, 37:3 (1988), 471–489 | DOI | MR | Zbl

[6] Edmunds D.E., Evans W.D., Harris D.J., “Two-sided estimates for the approximation numbers of certain Volterra integral operators”, Stud. math., 124:1 (1997), 59–80 | MR | Zbl

[7] Edmunds D.E., Stepanov V.D., “The measure of non-compactness and approximation numbers of certain Volterra integral operators”, Math. Ann., 298 (1994), 41–66 | DOI | MR | Zbl

[8] Evans W.D., Harris D.J., Lang J., “Two-sided estimates for the approximation numbers of Hardy-type operators in $L^\infty $ and $L^1$”, Stud. math., 130:2 (1988), 171–192 | MR

[9] Gokhberg I.Ts., Krein M.G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[10] Gol'dman M.L., Heinig H.P., Stepanov V.D., “On the principle of duality in Lorentz spaces”, Can. J. Math., 48:5 (1996), 959–979 | DOI | MR | Zbl

[11] König H., Eigenvalue distribution of compact operators, Birkhäuser, Basel, 1986 | MR

[12] Lifshits M.A., Linde W., Approximation and entropy numbers of Volterra operators with Applications to Brownian motion, Mem. AMS, 157, no. 745, Amer. Math. Soc., Providence, RI, 2002 | MR

[13] Lomakina E.N., “Otsenki approksimativnykh chisel odnogo klassa integralnykh operatorov. I”, Sib. mat. zhurn., 44:1 (2003), 178–192 | MR | Zbl

[14] Lomakina E.N., “Otsenki approksimativnykh chisel odnogo klassa integralnykh operatorov. II”, Sib. mat. zhurn., 44:2 (2003), 372–388 | MR | Zbl

[15] Lomakina E.N., Stepanov V.D., “On asymptotic behaviour of the approximation numbers and estimates of Schatten–von Neumann norms of the Hardy-type integral operators”, Function spaces and applications (New Delhi, 1997), Narosa, New Delhi, 2000, 153–187 | MR | Zbl

[16] Lomakina E.N., Stepanov V.D., “Asimptoticheskie otsenki approksimativnykh i entropiinykh chisel odnovesovogo operatora Rimana–Liuvillya”, Mat. trudy, 9:1 (2006), 52–100 | MR | Zbl

[17] Mazya V.G., Prostranstva S.L. Soboleva, Izd-vo LGU, L., 1985 | MR | Zbl

[18] Peller V.V., Hankel operators and their applications, Springer Monogr. Math., Springer, New York, 2003 | DOI | MR | Zbl

[19] Pietsch A., Eigenvalues and s-numbers, Cambridge Stud. Adv. Math., 13, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl

[20] Sinnamon G., Stepanov V.D., “The weighted Hardy inequality: New proofs and the case $p=1$”, J. London Math. Soc. Ser. 2, 54 (1996), 89–101 | DOI | MR | Zbl

[21] Stepanov V.D., “On the lower bounds for Schatten–von Neumann norms of certain Volterra integral operators”, J. London Math. Soc. Ser. 2, 61 (2000), 905–922 | DOI | MR | Zbl

[22] Stepanov V.D., Ushakova E.P., “Vesovye otsenki dlya integralnykh operatorov na poluosi s monotonnymi yadrami”, Sib. mat. zhurn., 45:6 (2004), 1378–1390 | MR | Zbl

[23] Ushakova E.P., “O singulyarnykh chislakh obobschennogo preobrazovaniya Stiltesa”, DAN, 431:2 (2010), 175–176 | MR | Zbl

[24] Ushakova E.P., “Otsenki singulyarnykh chisel preobrazovanii tipa Stiltesa”, Sib. mat. zhurn., 52:1 (2011), 201–209 | MR | Zbl

[25] Ushakova E.P., “On compactness of Laplace and Stieltjes type transformations in Lebesgue spaces”, J. Oper. Theory, 69:2 (2013), 511–524 | DOI | MR | Zbl