@article{TRSPY_2013_283_a16,
author = {A. I. Tyulenev},
title = {Differentiability points of functions in weighted {Sobolev} spaces},
journal = {Informatics and Automation},
pages = {257--266},
year = {2013},
volume = {283},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a16/}
}
A. I. Tyulenev. Differentiability points of functions in weighted Sobolev spaces. Informatics and Automation, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 257-266. http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a16/
[1] Chua S.-K., “Extension theorems on weighted Sobolev spaces”, Indiana Univ. Math. J., 41:4 (1992), 1027–1076 | DOI | MR | Zbl
[2] Zhikov V.V., “O vesovykh sobolevskikh prostranstvakh”, Mat. sb., 189:8 (1998), 27–58 | DOI | MR | Zbl
[3] Burenkov V.I., Sobolev spaces on domains, Teubner-Texte Math., 137, Teubner, Stuttgart, 1998 | DOI | MR | Zbl
[4] Stein I.M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR
[5] Fröhlich A., “The Stokes operator in weighted $L^q$-spaces. I: Weighted estimates for the Stokes resolvent problem in a half space”, J. Math. Fluid Mech., 5:2 (2003), 166–199 | MR | Zbl
[6] Poulsen E.T., “Boundary values in function spaces”, Math. Scand., 10 (1962), 45–52 | MR | Zbl
[7] Stein E.M., Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl