Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2013_283_a15, author = {S. A. Telyakovskii}, title = {Boundedness of the series of absolute values of blocks of sine series}, journal = {Informatics and Automation}, pages = {252--256}, publisher = {mathdoc}, volume = {283}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a15/} }
S. A. Telyakovskii. Boundedness of the series of absolute values of blocks of sine series. Informatics and Automation, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 252-256. http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a15/
[1] Telyakovskii S.A., “O chastnykh summakh ryadov Fure funktsii ogranichennoi variatsii”, Tr. MIAN, 219, 1997, 378–386 | MR
[2] Bari N.K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR
[3] Stechkin S.B., “Ob absolyutnoi skhodimosti ryadov Fure (trete soobschenie)”, Izv. AN SSSR. Ser. mat., 20:3 (1956), 385–412 | Zbl
[4] Leindler L., “On the uniform convergence and boundedness of a certain class of sine series”, Anal. math., 27 (2001), 279–285 | DOI | MR | Zbl
[5] Le R.J., Zhou S.P., “A generalization of an important trigonometric inequality”, J. Anal. Appl., 3 (2005), 163–168 | DOI | MR | Zbl
[6] Wang M.Z., Zhao Y., “Generalizations of some classical results under MVBV condition”, Math. Inequal. Appl., 12 (2009), 433–440 | MR | Zbl
[7] Belov A.S., Telyakovskii S.A., “Usilenie teorem Dirikhle–Zhordana i Yanga o ryadakh Fure funktsii ogranichennoi variatsii”, Mat. sb., 198:6 (2007), 25–40 | DOI | MR | Zbl
[8] Telyakovskii S.A., “K voprosu o kharaktere skhodimosti ryadov Fure funktsii ogranichennoi variatsii”, Izv. vuzov. Matematika, 2010, no. 3, 48–51 | MR | Zbl