Initial-boundary value problems for the Vlasov--Poisson equations in a~half-space
Informatics and Automation, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 204-232.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider initial-boundary value problems for the Vlasov–Poisson equations in a half-space that describe evolution of densities for ions and electrons in a rarefied plasma. For sufficiently small initial densities with compact supports and large strength of an external magnetic field, we prove the existence and uniqueness of classical solutions for initial-boundary value problems with different boundary conditions for the electric potential: the Dirichlet conditions, the Neumann conditions, and nonlocal conditions.
@article{TRSPY_2013_283_a13,
     author = {A. L. Skubachevskii},
     title = {Initial-boundary value problems for the {Vlasov--Poisson} equations in a~half-space},
     journal = {Informatics and Automation},
     pages = {204--232},
     publisher = {mathdoc},
     volume = {283},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a13/}
}
TY  - JOUR
AU  - A. L. Skubachevskii
TI  - Initial-boundary value problems for the Vlasov--Poisson equations in a~half-space
JO  - Informatics and Automation
PY  - 2013
SP  - 204
EP  - 232
VL  - 283
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a13/
LA  - ru
ID  - TRSPY_2013_283_a13
ER  - 
%0 Journal Article
%A A. L. Skubachevskii
%T Initial-boundary value problems for the Vlasov--Poisson equations in a~half-space
%J Informatics and Automation
%D 2013
%P 204-232
%V 283
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a13/
%G ru
%F TRSPY_2013_283_a13
A. L. Skubachevskii. Initial-boundary value problems for the Vlasov--Poisson equations in a~half-space. Informatics and Automation, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 204-232. http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a13/

[1] Iordanskii S.V., “O zadache Koshi dlya kineticheskogo uravneniya plazmy”, Tr. MIAN, 60, 1961, 181–194 | MR

[2] Braun W., Hepp K., “The Vlasov dynamics and its fluctuations in the $1/N$ limit of interacting classical particles”, Commun. Math. Phys., 56 (1977), 101–113 | DOI | MR | Zbl

[3] Maslov V.P., Uravneniya samosoglasovannogo polya, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 11, VINITI, M., 1978

[4] Dobrushin R.L., “Uravneniya Vlasova”, Funkts. analiz i ego pril., 13:2 (1979), 48–58 | MR | Zbl

[5] Arsenev A.A., “Suschestvovanie v tselom slabogo resheniya sistemy uravnenii Vlasova”, ZhVMiMF, 15:1 (1975), 136–147 | MR | Zbl

[6] DiPerna R., Lions P.L., “Solutions globales d'équations du type Vlasov–Poisson”, C. r. Acad. sci. Paris. Sér. 1, 307:12 (1988), 655–658 | MR | Zbl

[7] DiPerna R.J., Lions P.L., “Global weak solutions of Vlasov–Maxwell systems”, Commun. Pure Appl. Math., 42 (1989), 729–757 | DOI | MR | Zbl

[8] Batt J., “Ein Existenzbeweis für die Vlasov-Gleichung der Stellardynamik bei gemittelter Dichte”, Arch. Ration. Mech. Anal., 13 (1963), 296–308 | DOI | MR | Zbl

[9] Batt J., “Global symmetric solutions of the initial value problem of stellar dynamics”, J. Diff. Eqns., 25 (1977), 342–364 | DOI | MR | Zbl

[10] Batt J., Rein G., “Global classical solutions of the periodic Vlasov–Poisson system in three dimensions”, C. r. Acad. sci. Paris. Sér. 1, 313:6 (1991), 411–416 | MR | Zbl

[11] Bardos C., Degond P., “Global existence for the Vlasov–Poisson equation in 3 space variables with small initial data”, Ann. Inst. Henri Poincaré. Anal. Non Linéaire, 2 (1985), 101–118 | MR | Zbl

[12] Horst E., “On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation. II: Special cases”, Math. Methods Appl. Sci., 4 (1982), 19–32 | DOI | MR | Zbl

[13] Horst E., “On the asymptotic growth of the solutions of the Vlasov–Poisson system”, Math. Methods Appl. Sci., 16 (1993), 75–85 | DOI | MR | Zbl

[14] Pfaffelmoser K., “Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data”, J. Diff. Eqns., 95 (1992), 281–303 | DOI | MR | Zbl

[15] Rein G., Rendall A.D., “Global existence of classical solutions to the Vlasov–Poisson system in a three-dimensional, cosmological setting”, Arch. Ration. Mech. Anal., 126 (1994), 183–201 | DOI | MR | Zbl

[16] Schäffer J., “Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions”, Commun. Partial Diff. Eqns., 16 (1991), 1313–1335 | DOI | MR

[17] Rein G., “Existence of stationary, collisionless plasmas in bounded domains”, Math. Methods Appl. Sci., 15 (1992), 365–374 | DOI | MR | Zbl

[18] Vedenyapin V.V., “O klassifikatsii statsionarnykh reshenii uravneniya Vlasova na tore i granichnaya zadacha”, DAN, 323:6 (1992), 1004–1006 | MR | Zbl

[19] Pokhozhaev S.I., “O statsionarnykh resheniyakh uravnenii Vlasova–Puassona”, Dif. uravneniya, 46:4 (2010), 527–534 | MR | Zbl

[20] Arsenev A.A., “O suschestvovanii obobschennykh i statsionarnykh statisticheskikh reshenii sistemy uravnenii Vlasova v ogranichennoi oblasti”, Dif. uravneniya, 15:7 (1979), 1253–1266 | MR | Zbl

[21] Guo Y., “Global weak solutions of the Vlasov–Maxwell system with boundary conditions”, Commun. Math. Phys., 154 (1993), 245–263 | DOI | MR | Zbl

[22] Ben Abdallah N., “Weak solutions of the initial–boundary value problem for the Vlasov–Poisson system”, Math. Methods Appl. Sci., 17 (1994), 451–476 | DOI | MR | Zbl

[23] Alexandre R., “Weak solutions of the Vlasov–Poisson initial boundary value problem”, Math. Methods Appl. Sci., 16 (1993), 587–607 | DOI | MR | Zbl

[24] Weckler J., “On the initial–boundary-value problem for the Vlasov–Poisson system: Existence of weak solutions and stability”, Arch. Ration. Mech. Anal., 130 (1995), 145–161 | DOI | MR | Zbl

[25] Kozlov V.V., “Obobschennoe kineticheskoe uravnenie Vlasova”, UMN, 63:4 (2008), 93–130 | DOI | MR | Zbl

[26] Kozlov V.V., Ansambli Gibbsa i neravnovesnaya statisticheskaya mekhanika, Regulyarnaya i khaoticheskaya dinamika, M.; Izhevsk, 2008

[27] Samarskii A.A., “O nekotorykh problemakh teorii differentsialnykh uravnenii”, Dif. uravneniya, 16:11 (1980), 1925–1935 | MR

[28] Miyamoto K., Osnovy fiziki plazmy i upravlyaemogo sinteza, Fizmatlit, M., 2007

[29] Voprosy teorii plazmy, 11, eds. M.A. Leontovich, B.B. Kadomtsev, Energoizdat, M., 1982 | MR | Zbl

[30] Guo Y., “Regularity for the Vlasov equations in a half space”, Indiana Univ. Math. J., 43 (1994), 255–320 | DOI | MR | Zbl

[31] Hwang H.J., Velázquez J.J.L., “On global existence for the Vlasov–Poisson system in a half space”, J. Diff. Eqns., 247 (2009), 1915–1948 | DOI | MR | Zbl

[32] Skubachevskii A.L., Elliptic functional differential equations and applications, Birkhäuser, Basel, 1997 | MR | Zbl

[33] Galakhov E.I., Skubachevskii A.L., “On Feller semigroups generated by elliptic operators with integro-differential boundary conditions”, J. Diff. Eqns., 176 (2001), 315–355 | DOI | MR | Zbl

[34] Skubachevskii A.L., “Ob odnoznachnoi razreshimosti smeshannykh zadach dlya sistemy uravnenii Vlasova–Puassona v poluprostranstve”, DAN, 443:4 (2012), 431–434 | MR | Zbl

[35] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[36] Besov O.V., “O nekotorykh svoistvakh prostranstva $H_p^{(r_1,\dots ,r_m)}$”, Izv. vuzov. Matematika, 1960, no. 1, 16–23 | MR | Zbl

[37] Ladyzhenskaya O.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[38] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl