Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2013_282_a5, author = {E. Vl. Bulinskaya}, title = {Subcritical catalytic branching random walk with finite or infinite variance of offspring number}, journal = {Informatics and Automation}, pages = {69--79}, publisher = {mathdoc}, volume = {282}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a5/} }
TY - JOUR AU - E. Vl. Bulinskaya TI - Subcritical catalytic branching random walk with finite or infinite variance of offspring number JO - Informatics and Automation PY - 2013 SP - 69 EP - 79 VL - 282 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a5/ LA - ru ID - TRSPY_2013_282_a5 ER -
E. Vl. Bulinskaya. Subcritical catalytic branching random walk with finite or infinite variance of offspring number. Informatics and Automation, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 69-79. http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a5/
[1] Vatutin V.A., Topchii V.A., Yarovaya E.B., “Catalytic branching random walk and queueing systems with random number of independent servers”, Theory Probab. Math. Stat., 69 (2004), 1–15 | DOI | MR
[2] Albeverio S., Bogachev L.V., Yarovaya E.B., “Asymptotics of branching symmetric random walk on the lattice with a single source”, C. r. Acad. sci. Paris. Sér. 1: Math., 326 (1998), 975–980 | DOI | MR | Zbl
[3] Yarovaya E.B., “Kriterii eksponentsialnogo rosta chisla chastits v modelyakh vetvyaschikhsya sluchainykh bluzhdanii”, Teoriya veroyatn. i ee primen., 55:4 (2010), 705–731 | DOI | MR
[4] Sevastyanov B.A., Vetvyaschiesya protsessy, Nauka, M., 1971 | MR | Zbl
[5] Yarovaya E.B., “Kriticheskie vetvyaschiesya sluchainye bluzhdaniya po reshetkam nizkikh razmernostei”, Diskret. matematika, 21:1 (2009), 117–138 | DOI | MR | Zbl
[6] Yarovaya E., “Critical and subcritical branching symmetric random walks on $d$-dimensional lattices”, Advances in data analysis: Theory and applications to reliability and inference, data mining, bioinformatics, lifetime data, and neural networks, eds. C.H. Skiadas, Birkhäuser, Boston, 2010, 157–168 | MR
[7] Bulinskaya E.Vl., “Catalytic branching random walk on three-dimensional lattice”, Theory Stoch. Processes, 16:2 (2010), 23–32 | MR | Zbl
[8] Bulinskaya E.Vl., “Predelnye raspredeleniya chislennostei chastits v vetvyaschemsya sluchainom bluzhdanii”, Mat. zametki, 90:6 (2011), 845–859 | DOI | MR | Zbl
[9] Vatutin V.A., Topchii V.A., “Kataliticheskie vetvyaschiesya sluchainye bluzhdaniya na $\mathbb Z^d$ s vetvleniem v nule”, Mat. trudy, 14:2 (2011), 28–72 | MR
[10] Vatutin V.A., Topchii V.A., Khu Yu., “Vetvyascheesya sluchainoe bluzhdanie po reshetke $\mathbb Z^4$ s vetvleniem lish v nachale koordinat”, Teoriya veroyatn. i ee primen., 56:2 (2011), 224–247 | DOI
[11] Bulinskaya E.Vl., “Limit distributions arising in branching random walks on integer lattices”, Lith. Math. J., 51:3 (2011), 310–321 | DOI | MR | Zbl
[12] Bulinskaya E.Vl., “Predelnye teoremy dlya lokalnykh chislennostei chastits v vetvyaschemsya sluchainom bluzhdanii”, DAN., 444:6 (2012), 593–596 | Zbl
[13] Yarovaya E.B., Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Izd-vo Tsentra prikl. issled. pri mekh.-mat. f-te MGU, M., 2007
[14] Vatutin V.A., Vetvyaschiesya protsessy Bellmana–Kharrisa, MIAN, M., 2009
[15] Wolfe S.J., “On moments of probability distribution functions”, Fractional calculus and its applications, Lect. Notes Math., 457, Springer, Berlin, 1975, 306–316 | DOI | MR
[16] Bulinskaya E.Vl., “Kataliticheskoe vetvyascheesya sluchainoe bluzhdanie po dvumernoi reshetke”, Teoriya veroyatn. i ee primen., 55:1 (2010), 142–148 | DOI | MR
[17] Bulinskaya E.Vl., “Local particles numbers in critical branching random walk”, J. Theor. Probab., 2012 | DOI
[18] Vatutin V., Xiong J., “Some limit theorems for a particle system of single point catalytic branching random walks”, Acta math. Sin., 23:6 (2007), 997–1012 | DOI | MR | Zbl
[19] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1984
[20] de Brëin N.G., Asimptoticheskie metody v analize, Izd-vo inostr. lit., M., 1961
[21] Klar B., “On a test for exponentiality against Laplace order dominance”, Statistics, 37:6 (2003), 505–515 | DOI | MR | Zbl