Simulations and a~conditional limit theorem for intermediately subcritical branching processes in random environment
Informatics and Automation, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 52-68

Voir la notice de l'article provenant de la source Math-Net.Ru

Intermediately subcritical branching processes in random environment are at the borderline between two subcritical regimes and exhibit particularly rich behavior. In this paper, we prove a functional limit theorem for these processes. It is discussed together with two other recently proved limit theorems for the intermediately subcritical case and illustrated by several computer simulations.
@article{TRSPY_2013_282_a4,
     author = {Christian B\"oinghoff and G\"otz Kersting},
     title = {Simulations and a~conditional limit theorem for intermediately subcritical branching processes in random environment},
     journal = {Informatics and Automation},
     pages = {52--68},
     publisher = {mathdoc},
     volume = {282},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a4/}
}
TY  - JOUR
AU  - Christian Böinghoff
AU  - Götz Kersting
TI  - Simulations and a~conditional limit theorem for intermediately subcritical branching processes in random environment
JO  - Informatics and Automation
PY  - 2013
SP  - 52
EP  - 68
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a4/
LA  - en
ID  - TRSPY_2013_282_a4
ER  - 
%0 Journal Article
%A Christian Böinghoff
%A Götz Kersting
%T Simulations and a~conditional limit theorem for intermediately subcritical branching processes in random environment
%J Informatics and Automation
%D 2013
%P 52-68
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a4/
%G en
%F TRSPY_2013_282_a4
Christian Böinghoff; Götz Kersting. Simulations and a~conditional limit theorem for intermediately subcritical branching processes in random environment. Informatics and Automation, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 52-68. http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a4/