Evolution of branching processes in a~random environment
Informatics and Automation, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 231-256

Voir la notice de l'article provenant de la source Math-Net.Ru

This review paper presents the known results on the asymptotics of the survival probability and limit theorems conditioned on survival of critical and subcritical branching processes in independent and identically distributed random environments. This is a natural generalization of the time-inhomogeneous branching processes. The key assumptions of the family of population models in question are nonoverlapping generations and discrete time. The reader should be aware of the fact that there are many very interesting papers covering other issues in the theory of branching processes in random environments which are not mentioned here.
@article{TRSPY_2013_282_a17,
     author = {V. A. Vatutin and E. E. Dyakonova and S. Sagitov},
     title = {Evolution of branching processes in a~random environment},
     journal = {Informatics and Automation},
     pages = {231--256},
     publisher = {mathdoc},
     volume = {282},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a17/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - E. E. Dyakonova
AU  - S. Sagitov
TI  - Evolution of branching processes in a~random environment
JO  - Informatics and Automation
PY  - 2013
SP  - 231
EP  - 256
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a17/
LA  - ru
ID  - TRSPY_2013_282_a17
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A E. E. Dyakonova
%A S. Sagitov
%T Evolution of branching processes in a~random environment
%J Informatics and Automation
%D 2013
%P 231-256
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a17/
%G ru
%F TRSPY_2013_282_a17
V. A. Vatutin; E. E. Dyakonova; S. Sagitov. Evolution of branching processes in a~random environment. Informatics and Automation, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 231-256. http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a17/