Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2013_282_a17, author = {V. A. Vatutin and E. E. Dyakonova and S. Sagitov}, title = {Evolution of branching processes in a~random environment}, journal = {Informatics and Automation}, pages = {231--256}, publisher = {mathdoc}, volume = {282}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a17/} }
TY - JOUR AU - V. A. Vatutin AU - E. E. Dyakonova AU - S. Sagitov TI - Evolution of branching processes in a~random environment JO - Informatics and Automation PY - 2013 SP - 231 EP - 256 VL - 282 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a17/ LA - ru ID - TRSPY_2013_282_a17 ER -
V. A. Vatutin; E. E. Dyakonova; S. Sagitov. Evolution of branching processes in a~random environment. Informatics and Automation, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 231-256. http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a17/
[1] Afanasev V.I., Predelnye teoremy dlya uslovnogo sluchainogo bluzhdaniya i nekotorye primeneniya, Dis. ... kand. fiz.-mat. nauk, MGU, M., 1980
[2] Afanasev V.I., “Predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskret. matematika, 5:1 (1993), 45–58 | MR | Zbl
[3] Afanasev V.I., “Novaya predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskret. matematika, 9:3 (1997), 52–67 | DOI | MR | Zbl
[4] Afanasev V.I., “Predelnye teoremy dlya umerenno dokriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskret. matematika, 10:1 (1998), 141–157 | DOI | MR | Zbl
[5] Afanasev V.I., “O maksimume kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskret. matematika, 11:2 (1999), 86–102 | DOI | MR | Zbl
[6] Afanasev V.I., “Predelnye teoremy dlya promezhutochno dokriticheskogo i strogo dokriticheskogo vetvyaschikhsya protsessov v sluchainoi srede”, Diskret. matematika, 13:1 (2001), 132–157 | DOI | Zbl
[7] Afanasev V.I., “Funktsionalnaya predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskret. matematika, 13:4 (2001), 73–91 | DOI | MR | Zbl
[8] Afanasyev V.I., Böinghoff C., Kersting G., Vatutin V.A., “Limit theorems for weakly subcritical branching processes in random environment”, J. Theor. Probab., 25 (2012), 703–732 | DOI | MR | Zbl
[9] Afanasyev V.I., Böinghoff C., Kersting G., Vatutin V.A., “Conditional limit theorems for intermediately subcritical branching processes in random environment”, Ann. Inst. Henri Poincaré. Probab. Stat. (to appear) , arXiv: 1108.2127 [math.PR]
[10] Afanasyev V.I., Geiger J., Kersting G., Vatutin V.A., “Criticality for branching processes in random environment”, Ann. Probab., 33 (2005), 645–673 | DOI | MR | Zbl
[11] Afanasyev V.I., Geiger J., Kersting G., Vatutin V.A., “Functional limit theorems for strongly subcritical branching processes in random environment”, Stoch. Processes Appl., 115 (2005), 1658–1676 | DOI | MR | Zbl
[12] Albeverio S., Kozlov M.V., “O vozvratnosti i tranzientnosti zavisyaschikh ot sostoyaniya vetvyaschikhsya protsessov v sluchainoi srede”, Teoriya veroyatn. i ee primen., 48:4 (2003), 641–660 | DOI | MR | Zbl
[13] Athreya K.B., Karlin S., “On branching processes with random environments. I: Extinction probabilities”, Ann. Math. Stat., 42 (1971), 1499–1520 | DOI | MR | Zbl
[14] Athreya K.B., Karlin S., “Branching processes with random environments. II: Limit theorems”, Ann. Math. Stat., 42 (1971), 1843–1858 | DOI | MR | Zbl
[15] Athreya K.B., Ney P.E., Branching processes, Springer, Berlin, 1972 | MR | Zbl
[16] Bingham N.H., Goldie C.M., Teugels J.L., Regular variation, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl
[17] Birkner M., Geiger J., Kersting G., “Branching processes in random environment—A view on critical and subcritical cases”, Interacting stochastic systems, eds. J.-D. Deuschel, A. Greven, Springer, Berlin, 2005, 269–291 | DOI | MR
[18] Borovkov K.A., Vatutin V.A., “Reduced critical branching processes in random environment”, Stoch. Processes Appl., 71 (1997), 225–240 | DOI | MR | Zbl
[19] Böinghoff C., Dyakonova E.E., Kersting G., Vatutin V.A., “Branching processes in random environment which extinct at a given moment”, Markov Processes Relat. Fields, 16 (2010), 329–350 | MR | Zbl
[20] Dekking F.M., “On the survival probability of a branching process in a finite state i.i.d. environment”, Stoch. Processes Appl., 27 (1988), 151–157 | DOI | MR
[21] Doney R.A., “Conditional limit theorems for asymptotically stable random walks”, Z. Wahrscheinlichkeitstheor. verwandte Geb., 70 (1985), 351–360 | DOI | MR | Zbl
[22] Doney R.A., “Spitzer's condition and ladder variables in random walks”, Probab. Theory Relat. Fields, 101 (1995), 577–580 | DOI | MR | Zbl
[23] D'Souza J.C., Hambly B.M., “On the survival probability of a branching process in a random environment”, Adv. Appl. Probab., 29 (1997), 38–55 | DOI | MR | Zbl
[24] Durrett R., “Conditioned limit theorems for some null recurrent Markov processes”, Ann. Probab., 6 (1978), 798–828 | DOI | MR | Zbl
[25] Dyakonova E.E., “Ob asimptotike veroyatnosti nevyrozhdeniya mnogomernogo vetvyaschegosya protsessa v sluchainoi srede”, Diskret. matematika, 11:1 (1999), 113–128 | DOI | MR | Zbl
[26] Dyakonova E.E., “On multitype branching processes in a random environment”, J. Math. Sci., 111:3 (2002), 3537–3540 | DOI | MR | Zbl
[27] Dyakonova E.E., “Kriticheskie mnogotipnye vetvyascheesya protsessy v sluchainoi srede”, Diskret. matematika, 19:4 (2007), 23–41 | DOI | MR | Zbl
[28] Dyakonova E., “On subcritical multi-type branching process in random environment”, Algorithms, trees, combinatorics and probabilities, Proc. Fifth Colloquium on Mathematics and Computer Science, DMTCS, Nancy, 2008, 401–408 | MR
[29] Dyakonova E.E., Geiger J., Vatutin V.A., “On the survival probability and a functional limit theorem for branching processes in random environment”, Markov Processes Relat. Fields, 10 (2004), 289–306 | MR | Zbl
[30] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1984
[31] Fleischmann K., Siegmund-Schultze R., “The structure of reduced critical Galton–Watson processes”, Math. Nachr., 79 (1977), 233–241 | DOI | MR
[32] Fleischmann K., Vatutin V.A., “Reduced subcritical Galton–Watson processes in a random environment”, Adv. Appl. Probab., 31 (1999), 88–111 | DOI | MR | Zbl
[33] Geiger J., Kersting G., “The survival probability of a critical branching process in random environment”, Teoriya veroyatn. i ee primen., 45:3 (2000), 607–615 | DOI | MR | Zbl
[34] Geiger J., Kersting G., Vatutin V.A., “Limit theorems for subcritical branching processes in random environment”, Ann. Inst. Henri Poincaré. Probab. Stat., 39 (2003), 593–620 | DOI | MR | Zbl
[35] Guivarc'h Y., Liu Q., “Propriétés asymptotiques des processus de branchement en environnement aléatoire”, C. r. Acad. sci. Paris. Ser. 1: Math., 332 (2001), 339–344 | DOI | MR | Zbl
[36] Kaplan N., “Some results about multidimensional branching processes with random environments”, Ann. Probab., 2 (1974), 441–455 | DOI | MR | Zbl
[37] Kesten H., Spitzer F., “Convergence in distribution of products of random matrices”, Z. Wahrscheinlichkeitstheor. verwandte Geb., 67 (1984), 363–386 | DOI | MR | Zbl
[38] Kozlov M.V., “Ob asimptotike veroyatnosti nevyrozhdeniya kriticheskikh vetvyaschikhsya protsessov v sluchainoi srede”, Teoriya veroyatn. i ee primen., 21:4 (1976), 813–825 | MR | Zbl
[39] Kozlov M.V., “Uslovnaya funktsionalnaya predelnaya teorema dlya kriticheskogo vetvyaschego protsessa v sluchainoi srede”, DAN, 344:1 (1995), 12–15 | MR | Zbl
[40] Liu Q., “On the survival probability of a branching process in a random environment”, Ann. Inst. Henri Poincaré. Probab. Stat., 32 (1996), 1–10 | MR | Zbl
[41] Sevastyanov B.A., Vetvyaschiesya protsessy, Nauka, M., 1971 | MR | Zbl
[42] Spitser F., Printsipy sluchainogo bluzhdaniya, Mir, M., 1969
[43] Smith W.L., Wilkinson W.E., “On branching processes in random environments”, Ann. Math. Stat., 40 (1969), 814–827 | DOI | MR | Zbl
[44] Tanny D., “Limit theorems for branching processes in a random environment”, Ann. Probab., 5 (1977), 100–116 | DOI | MR | Zbl
[45] Tanny D., “On multitype branching processes in a random environment”, Adv. Appl. Probab., 13 (1981), 464–497 | DOI | MR | Zbl
[46] Vatutin V.A., “Redutsirovannye vetvyaschiesya protsessy v sluchainoi srede: kriticheskii sluchai”, Teoriya veroyatn. i ee primen., 47:1 (2002), 21–38 | DOI | MR | Zbl
[47] Vatutin V.A., “Predelnaya teorema dlya promezhutochno dokriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Teoriya veroyatn. i ee primen., 48:3 (2003), 453–465 | DOI | MR | Zbl
[48] Vatutin V.A., Dyakonova E.E., “Kriticheskie vetvyaschiesya protsessy v sluchainoi srede: veroyatnosti vyrozhdeniya v fiksirovannyi moment”, Diskret. matematika, 9:4 (1997), 100–126 | DOI | MR | Zbl
[49] Vatutin V.A., Dyakonova E.E., “Reduced branching processes in random environment”, Mathematics and computer science. II: Algorithms, trees, combinatorics and probabilities, eds. B. Chauvin, P. Flajolet, D. Gardy, A. Mokkadem, Birkhäuser, Basel, 2002, 455–467 | MR | Zbl
[50] Vatutin V.A., Dyakonova E.E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede. I: Predelnye teoremy”, Teoriya veroyatn. i ee primen., 48:2 (2003), 274–300 | DOI | MR | Zbl
[51] Vatutin V.A., Dyakonova E.E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede. II: Konechnomernye raspredeleniya”, Teoriya veroyatn. i ee primen., 49:2 (2004), 231–268 | DOI | MR | Zbl
[52] Vatutin V., Dyakonova E., “Yaglom type limit theorem for branching processes in random environment”, Mathematics and computer science. III: Algoritms, trees, combinatorics and probabilities, eds. M. Drmota, P. Flajolet, D. Gardy, B. Gittenberger, Birkhäuser, Basel, 2004, 375–385 | MR | Zbl
[53] Vatutin V.A., Dyakonova E.E., “Vetvyaschiesya protsessy v sluchainoi srede i butylochnye gorlyshki v evolyutsii populyatsii”, Teoriya veroyatn. i ee primen., 51:1 (2006), 22–46 | DOI | MR
[54] Vatutin V.A., Dyakonova E.E., “Predelnye teoremy dlya redutsirovannykh vetvyaschikhsya protsessov v sluchainoi srede”, Teoriya veroyatn. i ee primen., 52:2 (2007), 271–300 | DOI | MR
[55] Vatutin V.A., Dyakonova E.E., “Volny v redutsirovannykh vetvyaschikhsya protsessakh v sluchainoi srede”, Teoriya veroyatn. i ee primen., 53:4 (2008), 665–683 | DOI | MR
[56] Vatutin V.A., Dyakonova E.E., “Asimptoticheskie svoistva mnogotipnykh kriticheskikh vetvyaschikhsya protsessov, evolyutsioniruyuschikh v sluchainoi srede”, Diskret. matematika, 22:2 (2010), 22–40 | DOI | MR | Zbl
[57] Vatutin V.A., Kyprianou A.E., “Branching processes in random environment die slowly”, Algorithms, trees, combinatorics and probabilities, Proc. Fifth Colloquium on Mathematics and Computer Science, DMTCS, Nancy, 2008, 379–400 | MR
[58] Vatutin V.A., Vakhtel V.I., “Vnezapnoe vyrozhdenie kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Teoriya veroyatn. i ee primen., 54:3 (2009), 417–438 | DOI | MR | Zbl
[59] Vatutin V.A., Zubkov A.M., “Branching processes. II”, J. Sov. Math., 67:6 (1993), 3407–3485 | DOI | MR | Zbl
[60] Weissner E.W., “Multitype branching processes in random environments”, J. Appl. Probab., 8 (1971), 17–31 | DOI | MR | Zbl
[61] Zubkov A.M., “Predelnye raspredeleniya rasstoyaniya do blizhaishego obschego predka”, Teoriya veroyatn. i ee primen., 20:3 (1975), 614–623 | MR | Zbl