Large deviations for a~symmetric branching random walk on a~multidimensional lattice
Informatics and Automation, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 195-211.

Voir la notice de l'article provenant de la source Math-Net.Ru

An important role in the theory of branching random walks is played by the problem of the spectrum of a bounded symmetric operator, the generator of a random walk on a multidimensional integer lattice, with a one-point potential. We consider operators with potentials of a more general form that take nonzero values on a finite set of points of the integer lattice. The resolvent analysis of such operators has allowed us to study branching random walks with large deviations. We prove limit theorems on the asymptotic behavior of the Green function of transition probabilities. Special attention is paid to the case when the spectrum of the evolution operator of the mean numbers of particles contains a single eigenvalue. The results obtained extend the earlier studies in this field in such directions as the concept of a reaction front and the structure of a population inside a front and near its boundary.
@article{TRSPY_2013_282_a15,
     author = {S. A. Molchanov and E. B. Yarovaya},
     title = {Large deviations for a~symmetric branching random walk on a~multidimensional lattice},
     journal = {Informatics and Automation},
     pages = {195--211},
     publisher = {mathdoc},
     volume = {282},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a15/}
}
TY  - JOUR
AU  - S. A. Molchanov
AU  - E. B. Yarovaya
TI  - Large deviations for a~symmetric branching random walk on a~multidimensional lattice
JO  - Informatics and Automation
PY  - 2013
SP  - 195
EP  - 211
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a15/
LA  - ru
ID  - TRSPY_2013_282_a15
ER  - 
%0 Journal Article
%A S. A. Molchanov
%A E. B. Yarovaya
%T Large deviations for a~symmetric branching random walk on a~multidimensional lattice
%J Informatics and Automation
%D 2013
%P 195-211
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a15/
%G ru
%F TRSPY_2013_282_a15
S. A. Molchanov; E. B. Yarovaya. Large deviations for a~symmetric branching random walk on a~multidimensional lattice. Informatics and Automation, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 195-211. http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a15/

[1] Kolmogorov A.N., Petrovskii I.G., Piskunov N.S., “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem kolichestva veschestva, i ego primenenie k odnoi biologicheskoi probleme”, Byul. Mosk. gos. un-ta. Matematika i mekhanika, 1:6 (1937), 1–26 | MR

[2] Molchanov S.A., Yarovaya E.B., “Vetvyaschiesya protsessy s reshetchatoi prostranstvennoi dinamikoi i konechnym mnozhestvom tsentrov generatsii chastits”, DAN, 446:3 (2012), 259–262 | MR | Zbl

[3] Molchanov S.A., Yarovaya E.B., “Predelnye teoremy dlya funktsii Grina reshetchatogo laplasiana pri bolshikh ukloneniyakh sluchainogo bluzhdaniya”, Izv. RAN. Ser. mat., 76:6 (2012), 123–152 | DOI | MR

[4] Molchanov S.A., Yarovaya E.B., “Struktura populyatsii vnutri rasprostranyayuschegosya fronta vetvyaschegosya sluchainogo bluzhdaniya s konechnym chislom tsentrov generatsii chastits”, DAN, 447:3 (2012), 265–268 | MR | Zbl

[5] Sevastyanov B.A., “Vetvyaschiesya sluchainye protsessy dlya chastits, diffundiruyuschikh v ogranichennoi oblasti s pogloschayuschimi granitsami”, Teoriya veroyatn. i ee primen., 3:2 (1958), 121–136 | MR | Zbl

[6] Sevastyanov B.A., “Minimalnye tochki nadkriticheskogo vetvyaschegosya bluzhdaniya na reshetke $\mathbf {N}_0^r$ i mnogotipnye vetvyaschiesya protsessy Galtona–Vatsona”, Diskret. matematika, 12:1 (2000), 3–6 | DOI | MR | Zbl

[7] Fedoryuk M.V., Asimptotika: Integraly i ryady, Nauka, M., 1987 | MR

[8] Yarovaya E.B., Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Tsentr prikl. issled. pri mekh.-mat. fak-te MGU, M., 2007

[9] Yarovaya E.B., “Kriterii eksponentsialnogo rosta chisla chastits v modelyakh vetvyaschikhsya sluchainykh bluzhdanii”, Teoriya veroyatn. i ee primen., 55:4 (2010), 705–731 | DOI | MR

[10] Yarovaya E.B., “Simmetrichnye vetvyaschiesya bluzhdaniya s tyazhelymi khvostami”, Matematika i mekhanika, Vyp. 1, Sovremennye problemy matematiki i mekhaniki, 7, Izd-vo Mosk. un-ta, M., 2011, 77–84

[11] Yarovaya E. B., “Spektralnye svoistva evolyutsionnykh operatorov v modelyakh vetvyaschikhsya sluchainykh bluzhdanii”, Mat. zametki, 92:1 (2012), 123–140 | DOI | MR | Zbl

[12] Albeverio S., Bogachev L.V., Yarovaya E.B., “Asymptotics of branching symmetric random walk on the lattice with a single source”, C. r. Acad. sci. Paris. Sér. 1: Math., 326:8 (1998), 975–980 | DOI | MR | Zbl

[13] Cramér H., “Sur un nouveau théorème-limite de la théorie des probabilités”, Actual. sci. ind., 736 (1938), 5–23 | Zbl

[14] Cranston M., Koralov L., Molchanov S., Vainberg B., “Continuous model for homopolymers”, J. Funct. Anal., 256:8 (2009), 2656–2696 | DOI | MR | Zbl

[15] Gärtner J., Molchanov S.A., “Parabolic problems for the Anderson model. I: Intermittency and related topics”, Commun. Math. Phys., 132:3 (1990), 613–655 | DOI | MR | Zbl

[16] Gärtner J., König W., Molchanov S., “Geometric characterization of intermittency in the parabolic Anderson model”, Ann. Probab., 35:2 (2007), 439–499 | DOI | MR | Zbl

[17] Molchanov S., “Lectures on random media”, Lectures on probability theory: Ecole d'Eté de Probabilités de Saint-Flour XXII-1992, Lect. Notes Math., 1581, Springer, Berlin, 1994, 242–411 | DOI | MR | Zbl

[18] Uchiyama K., “Green's functions for random walks on $\mathbf Z^N$”, Proc. London Math. Soc. Ser. 3, 77:1 (1998), 215–240 | DOI | MR | Zbl

[19] Vatutin V.A., Topchiĭ V.A., Yarovaya E.B., “Catalytic branching random walks and queueing systems with a random number of independent servers”, Theor. Probab. Math. Stat., 69 (2004), 1–15 | DOI | MR