Weighted moments of the limit of a~branching process in a~random environment
Informatics and Automation, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 135-153

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(Z_n)$ be a supercritical branching process in an independent and identically distributed random environment $\zeta=(\zeta_0,\zeta_1,\ldots)$, and let $W$ be the limit of the normalized population size $Z_n/\mathbb E(Z_n|\zeta)$. We show a necessary and sufficient condition for the existence of weighted moments of $W$ of the form $\mathbb E\,W^\alpha\ell(W)$, where $\alpha\geq1$ and $\ell$ is a positive function slowly varying at $\infty$.
@article{TRSPY_2013_282_a11,
     author = {Xingang Liang and Quansheng Liu},
     title = {Weighted moments of the limit of a~branching process in a~random environment},
     journal = {Informatics and Automation},
     pages = {135--153},
     publisher = {mathdoc},
     volume = {282},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a11/}
}
TY  - JOUR
AU  - Xingang Liang
AU  - Quansheng Liu
TI  - Weighted moments of the limit of a~branching process in a~random environment
JO  - Informatics and Automation
PY  - 2013
SP  - 135
EP  - 153
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a11/
LA  - en
ID  - TRSPY_2013_282_a11
ER  - 
%0 Journal Article
%A Xingang Liang
%A Quansheng Liu
%T Weighted moments of the limit of a~branching process in a~random environment
%J Informatics and Automation
%D 2013
%P 135-153
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a11/
%G en
%F TRSPY_2013_282_a11
Xingang Liang; Quansheng Liu. Weighted moments of the limit of a~branching process in a~random environment. Informatics and Automation, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 135-153. http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a11/