Mathematical modeling of shock-wave processes under gas solid boundary interaction
Informatics and Automation, Modern problems of mechanics, Tome 281 (2013), pp. 42-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of numerical simulations are presented for planar air flows in a bounded volume of square cross section diminishing due to a uniform motion of the walls, for a flow of a propane–air mixture under sinusoidal variation of the size of the square domain, and for three-dimensional supersonic air and propane–air flows in channels of variable square cross section. Specific features of shock-wave processes that are associated with the piston effect and cumulation are established. The hypersonic analogy between planar and spatial flows is confirmed, which allows one to use two-dimensional solutions in estimating three-dimensional flows. The equations of a multicomponent ideal perfect gas and one-stage kinetics of chemical reactions are used to describe the flows. The method of numerical simulations is based on S. K. Godunov's scheme and implemented within an original software package.
@article{TRSPY_2013_281_a4,
     author = {V. A. Levin and I. S. Manuylovich and V. V. Markov},
     title = {Mathematical modeling of shock-wave processes under gas solid boundary interaction},
     journal = {Informatics and Automation},
     pages = {42--54},
     publisher = {mathdoc},
     volume = {281},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a4/}
}
TY  - JOUR
AU  - V. A. Levin
AU  - I. S. Manuylovich
AU  - V. V. Markov
TI  - Mathematical modeling of shock-wave processes under gas solid boundary interaction
JO  - Informatics and Automation
PY  - 2013
SP  - 42
EP  - 54
VL  - 281
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a4/
LA  - ru
ID  - TRSPY_2013_281_a4
ER  - 
%0 Journal Article
%A V. A. Levin
%A I. S. Manuylovich
%A V. V. Markov
%T Mathematical modeling of shock-wave processes under gas solid boundary interaction
%J Informatics and Automation
%D 2013
%P 42-54
%V 281
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a4/
%G ru
%F TRSPY_2013_281_a4
V. A. Levin; I. S. Manuylovich; V. V. Markov. Mathematical modeling of shock-wave processes under gas solid boundary interaction. Informatics and Automation, Modern problems of mechanics, Tome 281 (2013), pp. 42-54. http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a4/

[1] Korobeinikov V.P., Levin V.A., Markov V.V., Chernyi G.G., “Propagation of blast waves in a combustible gas”, Astronautica acta., 17:4–5 (1972), 529–537

[2] Levin V.A., Markov V.V., Zhuravskaya T.A., “Pryamoe initsiirovanie detonatsii v vodorodovozdushnoi smesi skhodyascheisya udarnoi volnoi”, Khim. fizika., 20:5 (2001), 26–30

[3] Levin V.A., Markov V.V., Osinkin S.F., Zhuravskaya T.A., “Opredelenie kriticheskikh uslovii initsiirovaniya detonatsii v ogranichennom ob'eme skhodyascheisya k tsentru udarnoi volnoi”, Fizika goreniya i vzryva, 38:6 (2002), 96–102

[4] Semenov I.V., Utkin P.S., Markov V.V., “Chislennoe modelirovanie dvumernykh detonatsionnykh techenii na mnogoprotsessornoi vychislitelnoi tekhnike”, Vychisl. metody i programmirovanie, 9:1 (2008), 119–128

[5] Semenov I.V., Utkin P.S., Markov V.V., “Chislennoe modelirovanie initsiirovaniya detonatsii v profilirovannoi trube”, Fizika goreniya i vzryva, 45:6 (2009), 73–81

[6] Tunik Yu.V., “Chislennoe modelirovanie detonatsionnogo goreniya vodorodovozdushnykh smesei v sople Lavalya”, Izv. RAN. Mekhanika zhidkosti i gaza, 2010, no. 2, 107–114 | Zbl

[7] Levin V.A., Manuilovich I.S., Markov V.V., “Formirovanie detonatsii vo vraschayuschikhsya kanalakh”, DAN, 432:6 (2010), 775–778 | Zbl

[8] Ilyushin A.A., “Zakon ploskikh sechenii v aerodinamike bolshikh sverkhzvukovykh skorostei”, PMM, 20:6 (1956), 733–755

[9] Chernyi G.G., Techeniya gaza s bolshoi sverkhzvukovoi skorostyu, Fizmatgiz, M., 1959

[10] Levin V.A., Markov V.V., Osinkin S.F., “Initsiirovanie detonatsii porshnem v smesi vodoroda s vozdukhom”, DAN SSSR., 313:2 (1990), 288–291

[11] Westbrook C.K., Dryer F.L., “Chemical kinetic modeling of hydrocarbon combustion”, Prog. Energy Combust. Sci., 10 (1984), 1–57 | DOI

[12] Godunov S.K., Zabrodin A.V., Ivanov M.Ya., Kraiko A.N., Prokopov G.P., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl