Mathematical modeling of shock-wave processes under gas solid boundary interaction
Informatics and Automation, Modern problems of mechanics, Tome 281 (2013), pp. 42-54

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of numerical simulations are presented for planar air flows in a bounded volume of square cross section diminishing due to a uniform motion of the walls, for a flow of a propane–air mixture under sinusoidal variation of the size of the square domain, and for three-dimensional supersonic air and propane–air flows in channels of variable square cross section. Specific features of shock-wave processes that are associated with the piston effect and cumulation are established. The hypersonic analogy between planar and spatial flows is confirmed, which allows one to use two-dimensional solutions in estimating three-dimensional flows. The equations of a multicomponent ideal perfect gas and one-stage kinetics of chemical reactions are used to describe the flows. The method of numerical simulations is based on S. K. Godunov's scheme and implemented within an original software package.
@article{TRSPY_2013_281_a4,
     author = {V. A. Levin and I. S. Manuylovich and V. V. Markov},
     title = {Mathematical modeling of shock-wave processes under gas solid boundary interaction},
     journal = {Informatics and Automation},
     pages = {42--54},
     publisher = {mathdoc},
     volume = {281},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a4/}
}
TY  - JOUR
AU  - V. A. Levin
AU  - I. S. Manuylovich
AU  - V. V. Markov
TI  - Mathematical modeling of shock-wave processes under gas solid boundary interaction
JO  - Informatics and Automation
PY  - 2013
SP  - 42
EP  - 54
VL  - 281
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a4/
LA  - ru
ID  - TRSPY_2013_281_a4
ER  - 
%0 Journal Article
%A V. A. Levin
%A I. S. Manuylovich
%A V. V. Markov
%T Mathematical modeling of shock-wave processes under gas solid boundary interaction
%J Informatics and Automation
%D 2013
%P 42-54
%V 281
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a4/
%G ru
%F TRSPY_2013_281_a4
V. A. Levin; I. S. Manuylovich; V. V. Markov. Mathematical modeling of shock-wave processes under gas solid boundary interaction. Informatics and Automation, Modern problems of mechanics, Tome 281 (2013), pp. 42-54. http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a4/