On congruences with products of variables from short intervals and applications
Informatics and Automation, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 67-96
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain upper bounds on the number of solutions to congruences of the type $(x_1+s)\dots(x_\nu+s)\equiv(y_1+s)\dots(y_\nu +s)\not\equiv0\pmod p$ modulo a prime $p$ with variables from some short intervals. We give some applications of our results and in particular improve several recent estimates of J. Cilleruelo and M. Z. Garaev on exponential congruences and on cardinalities of products of short intervals, some double character sum estimates of J. Friedlander and H. Iwaniec and some results of M.-C. Chang and A. A. Karatsuba on character sums twisted with the divisor function.
@article{TRSPY_2013_280_a4,
author = {Jean Bourgain and Moubariz Z. Garaev and Sergei V. Konyagin and Igor E. Shparlinski},
title = {On congruences with products of variables from short intervals and applications},
journal = {Informatics and Automation},
pages = {67--96},
publisher = {mathdoc},
volume = {280},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a4/}
}
TY - JOUR AU - Jean Bourgain AU - Moubariz Z. Garaev AU - Sergei V. Konyagin AU - Igor E. Shparlinski TI - On congruences with products of variables from short intervals and applications JO - Informatics and Automation PY - 2013 SP - 67 EP - 96 VL - 280 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a4/ LA - en ID - TRSPY_2013_280_a4 ER -
%0 Journal Article %A Jean Bourgain %A Moubariz Z. Garaev %A Sergei V. Konyagin %A Igor E. Shparlinski %T On congruences with products of variables from short intervals and applications %J Informatics and Automation %D 2013 %P 67-96 %V 280 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a4/ %G en %F TRSPY_2013_280_a4
Jean Bourgain; Moubariz Z. Garaev; Sergei V. Konyagin; Igor E. Shparlinski. On congruences with products of variables from short intervals and applications. Informatics and Automation, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 67-96. http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a4/