Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2013_280_a4, author = {Jean Bourgain and Moubariz Z. Garaev and Sergei V. Konyagin and Igor E. Shparlinski}, title = {On congruences with products of variables from short intervals and applications}, journal = {Informatics and Automation}, pages = {67--96}, publisher = {mathdoc}, volume = {280}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a4/} }
TY - JOUR AU - Jean Bourgain AU - Moubariz Z. Garaev AU - Sergei V. Konyagin AU - Igor E. Shparlinski TI - On congruences with products of variables from short intervals and applications JO - Informatics and Automation PY - 2013 SP - 67 EP - 96 VL - 280 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a4/ LA - en ID - TRSPY_2013_280_a4 ER -
%0 Journal Article %A Jean Bourgain %A Moubariz Z. Garaev %A Sergei V. Konyagin %A Igor E. Shparlinski %T On congruences with products of variables from short intervals and applications %J Informatics and Automation %D 2013 %P 67-96 %V 280 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a4/ %G en %F TRSPY_2013_280_a4
Jean Bourgain; Moubariz Z. Garaev; Sergei V. Konyagin; Igor E. Shparlinski. On congruences with products of variables from short intervals and applications. Informatics and Automation, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 67-96. http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a4/
[1] Ayyad A., Cochrane T., Zheng Z., “The congruence $x_1x_2 \equiv x_3x_4 \pmod p$, the equation $x_1x_2 = x_3x_4$, and mean values of character sums”, J. Number Theory, 59 (1996), 398–413 | DOI | MR | Zbl
[2] Betke U., Henk M., Wills J.M., “Successive-minima-type inequalities”, Discrete Comput. Geom., 9 (1993), 165–175 | DOI | MR | Zbl
[3] Bourgain J., “More on the sum-product phenomenon in prime fields and its applications”, Int. J. Number Theory, 1 (2005), 1–32 | DOI | MR | Zbl
[4] Bourgain J., Garaev M.Z., Konyagin S.V., Shparlinski I.E., “On the hidden shifted power problem”, SIAM J. Comput., 41:6 (2012), 1524–1557 | DOI | MR | Zbl
[5] Chan T.H., Shparlinski I.E., “On the concentration of points on modular hyperbolas and exponential curves”, Acta arith., 142 (2010), 59–66 | DOI | MR | Zbl
[6] Chang M.-C., “Factorization in generalized arithmetic progressions and applications to the Erdős–Szemerédi sum-product problems”, Geom. Funct. Anal., 13 (2003), 720–736 | DOI | MR | Zbl
[7] Chang M.-C., “Character sums in finite fields”, Finite fields: Theory and applications, Amer. Math. Soc., Providence, RI, 2010, 83–98 | DOI | MR | Zbl
[8] Cilleruelo J., Garaev M.Z., “Concentration of points on two and three dimensional modular hyperbolas and applications”, Geom. Funct. Anal., 21 (2011), 892–904 | DOI | MR | Zbl
[9] Cochrane T., Shi S., “The congruence $x_1x_2 \equiv x_3x_4 \pmod m$ and mean values of character sums”, J. Number Theory, 130 (2010), 767–785 | DOI | MR | Zbl
[10] Cochrane T., Zheng Z., “High order moments of character sums”, Proc. Amer. Math. Soc., 126 (1998), 951–956 | DOI | MR | Zbl
[11] Friedlander J.B., Iwaniec H., “The divisor problem for arithmetic progressions”, Acta arith., 45 (1985), 273–277 | MR | Zbl
[12] Friedlander J.B., Iwaniec H., “Estimates for character sums”, Proc. Amer. Math. Soc., 119 (1993), 365–372 | DOI | MR | Zbl
[13] Garaev M.Z., “On multiplicative congruences”, Math. Z., 272 (2012), 473–482 | DOI | MR | Zbl
[14] Garaev M.Z., Garcia V.C., “The equation $x_1x_2=x_3x_4+\lambda $ in fields of prime order and applications”, J. Number Theory, 128 (2008), 2520–2537 | DOI | MR | Zbl
[15] Karatsuba A.A., “On a certain arithmetic sum”, Sov. Math. Dokl., 12 (1971), 1172–1174 | MR | Zbl
[16] Karatsuba A.A., “Weighted character sums”, Izv. Math., 64 (2000), 249–263 | DOI | DOI | MR | Zbl
[17] Karatsuba A.A., “Arithmetic problems in the theory of Dirichlet characters”, Russ. Math. Surv., 63 (2008), 641–690 | DOI | DOI | MR | Zbl
[18] Konyagin S.V., “Estimates of character sums in finite fields”, Math. Notes, 88 (2010), 503–515 | DOI | DOI | MR | Zbl
[19] Le Boudec P., “Power-free values of the polynomial $t_1\dots t_r-1$”, Bull. Aust. Math. Soc., 85:1 (2012), 154–163 | DOI | MR | Zbl
[20] Mignotte M., Mathematics for computer algebra, Springer, New York, 1992 | MR | Zbl
[21] Narkiewicz W., Elementary and analytic theory of algebraic numbers, Pol. Sci. Publ., Warszawa, 1990 | MR
[22] Shparlinski I.E., “On the distribution of points on multidimensional modular hyperbolas”, Proc. Jpn. Acad. A., 83:2 (2007), 5–9 | DOI | MR | Zbl
[23] Shparlinski I.E., “On a generalisation of a Lehmer problem”, Math. Z., 263 (2009), 619–631 | DOI | MR | Zbl
[24] Tao T., V.H. Vu, Additive combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl