Kolmogorov widths of Sobolev classes on an irregular domain
Informatics and Automation, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 41-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TRSPY_2013_280_a2,
     author = {O. V. Besov},
     title = {Kolmogorov widths of {Sobolev} classes on an irregular domain},
     journal = {Informatics and Automation},
     pages = {41--52},
     publisher = {mathdoc},
     volume = {280},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a2/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Kolmogorov widths of Sobolev classes on an irregular domain
JO  - Informatics and Automation
PY  - 2013
SP  - 41
EP  - 52
VL  - 280
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a2/
LA  - ru
ID  - TRSPY_2013_280_a2
ER  - 
%0 Journal Article
%A O. V. Besov
%T Kolmogorov widths of Sobolev classes on an irregular domain
%J Informatics and Automation
%D 2013
%P 41-52
%V 280
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a2/
%G ru
%F TRSPY_2013_280_a2
O. V. Besov. Kolmogorov widths of Sobolev classes on an irregular domain. Informatics and Automation, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 41-52. http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a2/

[1] Tikhomirov V.M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR

[2] Pinkus A., $n$-Widths in approximation theory, Springer, Berlin, 1985 | MR

[3] Tikhomirov V.M., “Teoriya priblizhenii”, Analiz–2, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 14, VINITI, M., 1987, 103–260 | MR

[4] Tikhomirov V.M., “Poperechniki mnozhestv v funktsionalnykh prostranstvakh i teoriya nailuchshikh priblizhenii”, UMN, 15:3 (1960), 81–120 | MR | Zbl

[5] Ismagilov R.S., “Poperechniki mnozhestv v lineinykh normirovannykh prostranstvakh i priblizhenie funktsii trigonometricheskimi mnogochlenami”, UMN, 29:3 (1974), 161–178 | MR | Zbl

[6] Kashin B.S., “Poperechniki nekotorykh konechnomernykh mnozhestv i klassov gladkikh funktsii”, Izv. AN SSSR. Ser. mat., 41:2 (1977), 334–351 | MR | Zbl

[7] Birman M.Sh., Solomyak M.Z., “Kusochno-polinomialnye priblizheniya funktsii klassov $W^\alpha _p$”, Mat. sb., 73:3 (1967), 331–355 | MR | Zbl

[8] Vasileva A.A., “Poperechniki vesovykh klassov Soboleva na oblasti, udovletvoryayuschei usloviyu Dzhona”, Tr. MIAN, 280 (2013), 97–125 | Zbl

[9] Besov O.V., “Integralnye otsenki differentsiruemykh funktsii na neregulyarnykh oblastyakh”, Mat. sb., 201:12 (2010), 69–82 | DOI | MR

[10] Trushin B.V., “Nepreryvnost vlozhenii vesovykh prostranstv Soboleva v prostranstva Lebega na anizotropno neregulyarnykh oblastyakh”, Tr. MIAN, 269 (2010), 271–289 | MR | Zbl

[11] Besov O.V., “Sobolev's embedding theorem for anisotropically irregular domains”, Eurasian Math. J., 2:1 (2011), 32–51 | MR | Zbl

[12] Sobolev S.L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[13] Maiorov V.E., “Diskretizatsiya zadachi o poperechnikakh”, UMN, 30:6 (1975), 179–180 | MR | Zbl

[14] Vasileva A.A., “Kolmogorovskie poperechniki vesovykh klassov Soboleva na kube”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:4 (2010), 100–116

[15] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, Fizmatlit, M., 1996 | MR