Traces of the discrete Hilbert transform with quadratic phase
Informatics and Automation, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 255-269.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TRSPY_2013_280_a17,
     author = {K. I. Oskolkov and M. A. Chahkiev},
     title = {Traces of the discrete {Hilbert} transform with quadratic phase},
     journal = {Informatics and Automation},
     pages = {255--269},
     publisher = {mathdoc},
     volume = {280},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a17/}
}
TY  - JOUR
AU  - K. I. Oskolkov
AU  - M. A. Chahkiev
TI  - Traces of the discrete Hilbert transform with quadratic phase
JO  - Informatics and Automation
PY  - 2013
SP  - 255
EP  - 269
VL  - 280
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a17/
LA  - ru
ID  - TRSPY_2013_280_a17
ER  - 
%0 Journal Article
%A K. I. Oskolkov
%A M. A. Chahkiev
%T Traces of the discrete Hilbert transform with quadratic phase
%J Informatics and Automation
%D 2013
%P 255-269
%V 280
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a17/
%G ru
%F TRSPY_2013_280_a17
K. I. Oskolkov; M. A. Chahkiev. Traces of the discrete Hilbert transform with quadratic phase. Informatics and Automation, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 255-269. http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a17/

[1] Arkhipov G.I., Oskolkov K.I., “Ob odnom spetsialnom trigonometricheskom ryade i ego prilozheniyakh”, Mat. sb., 134:2 (1987), 147–157 | MR | Zbl

[2] Hardy G.H., Littlewood J.E., “Some problems of Diophantine approximation. II: The trigonometric series associated with the elliptic $\vartheta $-functions”, Acta math., 37 (1914), 193–238 | DOI | MR

[3] Hardy G.H., Collected papers of G.H. Hardy, including joint papers with J.E. Littlewood and others, V. 1, Clarendon Press, Oxford, 1966 | MR | Zbl

[4] Jaffard S., “The Spectrum of Singularities of Riemann's Function”, Rev. Mat. Iberoam., 12:2 (1996), 441–460 | DOI | MR | Zbl

[5] Jarník V., “Über die simultanen diophantischen Approximationen”, Math. Z., 33 (1931), 505–543 | DOI | MR

[6] Khinchin A.Ya., Tsepnye drobi, 3-e izd., Fizmatgiz, M., 1961

[7] Oskolkov K.I., “On functional properties of incomplete Gaussian sums”, Can. J. Math., 43 (1991), 182–212 | DOI | MR | Zbl

[8] Oskolkov K.I., “A class of I.M. Vinogradov's series and its applications in harmonic analysis”, Progress in approximation theory: An international perspective, Springer, New York, 1992, 353–402 | DOI | MR | Zbl

[9] Oskolkov K.I., “Schrödinger equation and oscillatory Hilbert transforms of second degree”, J. Fourier Anal. Appl., 4:3 (1998), 341–356 | DOI | MR | Zbl

[10] Oskolkov K.I., “The Schrödinger density and the Talbot effect”, Approximation and probability, Banach Center Publ., 72, Inst. Math. Pol. Acad. Sci., Warsaw, 2006, 189–219 | DOI | MR | Zbl

[11] Oskolkov K.I., Chakhkiev M.A., “O “nedifferentsiruemoi” funktsii Rimana i uravnenii Shrëdingera”, Tr. MIAN, 269 (2010), 193–203 | MR | Zbl

[12] Vinogradov I.M., Osnovy teorii chisel, 9-e izd., Nauka, M., 1981 | MR

[13] Zygmund A., Trigonometric series, Cambridge Univ. Press, Cambridge, 1959 | MR | Zbl