A few remarks on sampling of signals with small spectrum
Informatics and Automation, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 247-254

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a bounded set $S$ of small measure, we discuss the existence of sampling sequences for the Paley–Wiener space $\mathrm {PW}_S$, which have both densities and sampling bounds close to the optimal ones.
@article{TRSPY_2013_280_a16,
     author = {Shahaf Nitzan and Alexander Olevskii and Alexander Ulanovskii},
     title = {A few remarks on sampling of signals with small spectrum},
     journal = {Informatics and Automation},
     pages = {247--254},
     publisher = {mathdoc},
     volume = {280},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a16/}
}
TY  - JOUR
AU  - Shahaf Nitzan
AU  - Alexander Olevskii
AU  - Alexander Ulanovskii
TI  - A few remarks on sampling of signals with small spectrum
JO  - Informatics and Automation
PY  - 2013
SP  - 247
EP  - 254
VL  - 280
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a16/
LA  - en
ID  - TRSPY_2013_280_a16
ER  - 
%0 Journal Article
%A Shahaf Nitzan
%A Alexander Olevskii
%A Alexander Ulanovskii
%T A few remarks on sampling of signals with small spectrum
%J Informatics and Automation
%D 2013
%P 247-254
%V 280
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a16/
%G en
%F TRSPY_2013_280_a16
Shahaf Nitzan; Alexander Olevskii; Alexander Ulanovskii. A few remarks on sampling of signals with small spectrum. Informatics and Automation, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 247-254. http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a16/