Greedy expansions in Hilbert spaces
Informatics and Automation, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 234-246

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the rate of convergence of expansions of elements in a Hilbert space $H$ into series with regard to a given dictionary $\mathcal D$. The primary goal of this paper is to study representations of an element $f\in H$ by a series $f\sim\sum_{j=1}^\infty c_j(f)g_j(f)$, $g_j(f)\in\mathcal D$. Such a representation involves two sequences: $\{g_j(f)\}_{j=1}^\infty$ and $\{c_j(f)\}_{j=1}^\infty$. In this paper the construction of $\{g_j(f)\}_{j=1}^\infty$ is based on ideas used in greedy-type nonlinear approximation, hence the use of the term greedy expansion. An interesting open problem questions, "What is the best possible rate of convergence of greedy expansions for $f\in A_1(\mathcal D)$?" Previously it was believed that the rate of convergence was slower than $m^{-\frac14}$. The qualitative result of this paper is that the best possible rate of convergence of greedy expansions for $f\in A_1(\mathcal D)$ is faster than $m^{-\frac14}$. In fact, we prove it is faster than $m^{-\frac27}$.
@article{TRSPY_2013_280_a15,
     author = {J. L. Nelson and V. N. Temlyakov},
     title = {Greedy expansions in {Hilbert} spaces},
     journal = {Informatics and Automation},
     pages = {234--246},
     publisher = {mathdoc},
     volume = {280},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a15/}
}
TY  - JOUR
AU  - J. L. Nelson
AU  - V. N. Temlyakov
TI  - Greedy expansions in Hilbert spaces
JO  - Informatics and Automation
PY  - 2013
SP  - 234
EP  - 246
VL  - 280
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a15/
LA  - en
ID  - TRSPY_2013_280_a15
ER  - 
%0 Journal Article
%A J. L. Nelson
%A V. N. Temlyakov
%T Greedy expansions in Hilbert spaces
%J Informatics and Automation
%D 2013
%P 234-246
%V 280
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a15/
%G en
%F TRSPY_2013_280_a15
J. L. Nelson; V. N. Temlyakov. Greedy expansions in Hilbert spaces. Informatics and Automation, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 234-246. http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a15/