Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2012_279_a5, author = {A. V. Domrina}, title = {Extended solutions in a~noncommutative sigma model}, journal = {Informatics and Automation}, pages = {72--80}, publisher = {mathdoc}, volume = {279}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a5/} }
A. V. Domrina. Extended solutions in a~noncommutative sigma model. Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 72-80. http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a5/
[1] Lechtenfeld O., Popov A. D., “Noncommutative multi-solitons in $2+1$ dimensions”, J. High Energy Phys., 2001:11 (2001), 040 | DOI | MR
[2] Domrin A. V., Lechtenfeld O., Petersen S., “Sigma-model solitons in the noncommutative plane: construction and stability analysis”, J. High Energy Phys., 2005:3 (2005), 045 | DOI | MR
[3] Domrin A. V., “Nekommutativnye unitony”, TMF, 154:2 (2008), 220–239 | DOI | MR | Zbl
[4] Domrin A. V., “Prostranstva modulei reshenii nekommutativnoi sigma-modeli”, TMF, 156:3 (2008), 307–327 | DOI | MR | Zbl
[5] Ferreira M. J., Simões B. A., Wood J. C., “All harmonic 2-spheres in the unitary group, completely explicitly”, Math. Z., 266 (2010), 953–978 | DOI | MR | Zbl
[6] Uhlenbeck K., “Harmonic maps into Lie groups (classical solutions of the chiral model)”, J. Diff. Geom., 30 (1989), 1–50 | MR | Zbl