Bochner--Hartogs type extension theorem for roots and logarithms of holomorphic line bundles
Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 269-287
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove an extension theorem for roots and logarithms of holomorphic line bundles across strictly pseudoconcave boundaries: they extend in all cases except one, when the dimension and Morse index of a critical point is 2. In that case we give an explicit description of obstructions to the extension.
@article{TRSPY_2012_279_a17,
author = {S. Ivashkovich},
title = {Bochner--Hartogs type extension theorem for roots and logarithms of holomorphic line bundles},
journal = {Informatics and Automation},
pages = {269--287},
publisher = {mathdoc},
volume = {279},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a17/}
}
TY - JOUR AU - S. Ivashkovich TI - Bochner--Hartogs type extension theorem for roots and logarithms of holomorphic line bundles JO - Informatics and Automation PY - 2012 SP - 269 EP - 287 VL - 279 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a17/ LA - en ID - TRSPY_2012_279_a17 ER -
S. Ivashkovich. Bochner--Hartogs type extension theorem for roots and logarithms of holomorphic line bundles. Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 269-287. http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a17/