Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2012_279_a15, author = {Gennadi M. Henkin and Peter L. Polyakov}, title = {Inversion formulas for complex {Radon} transform on projective varieties and boundary value problems for systems of linear {PDEs}}, journal = {Informatics and Automation}, pages = {242--256}, publisher = {mathdoc}, volume = {279}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a15/} }
TY - JOUR AU - Gennadi M. Henkin AU - Peter L. Polyakov TI - Inversion formulas for complex Radon transform on projective varieties and boundary value problems for systems of linear PDEs JO - Informatics and Automation PY - 2012 SP - 242 EP - 256 VL - 279 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a15/ LA - en ID - TRSPY_2012_279_a15 ER -
%0 Journal Article %A Gennadi M. Henkin %A Peter L. Polyakov %T Inversion formulas for complex Radon transform on projective varieties and boundary value problems for systems of linear PDEs %J Informatics and Automation %D 2012 %P 242-256 %V 279 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a15/ %G en %F TRSPY_2012_279_a15
Gennadi M. Henkin; Peter L. Polyakov. Inversion formulas for complex Radon transform on projective varieties and boundary value problems for systems of linear PDEs. Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 242-256. http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a15/
[1] Andreotti A., Norguet F., “La convexité holomorphe dans l'espace analytique des cycles d'une variété algébrique”, Ann. Scuola Norm. Super. Pisa. Sci. Fis. Mat. III Ser., 21 (1967), 31–82 | MR | Zbl
[2] Andreotti A., Norguet F., “Cycles of algebraic manifolds and $\partial\bar\partial$-cohomology”, Ann. Scuola Norm. Super. Pisa. Sci. Fis. Mat. III Ser., 25 (1971), 59–114 | MR | Zbl
[3] Berndtsson B., Passare M., “Integral formulas and an explicit version of the fundamental principle”, J. Funct. Anal., 84 (1989), 358–372 | DOI | MR | Zbl
[4] Cartan H., “Faisceaux analytiques sur les variétés de Stein”, Fonctions analytiques de plusieurs variables complexes, Sémin. H. Cartan Éc. Norm. Supér., V. 4: 1951/1952, Secr. math., Paris, 1955, Exp. 18, 19
[5] Coleff N. R., Herrera M. E., Les courants résiduels associés à une forme méromorphe, Lect. Notes Math., 633, Springer, Berlin, 1978 | MR | Zbl
[6] Dickenstein A., Sessa C., “Canonical representatives in moderate cohomology”, Invent. math., 80 (1985), 417–434 | DOI | MR | Zbl
[7] Eastwood M. G., Penrose R., Wells R. O. (Jr.), “Cohomology and massless fields”, Commun. Math. Phys., 78 (1981), 305–351 | DOI | MR | Zbl
[8] Fantappiè L., “L'indicatrice proiettiva dei funzionali lineari e i predotti funzionali proiettivi”, Ann. Mat. Pura Appl. IV Ser., 22 (1943), 181–289 | DOI | MR | Zbl
[9] Fantappiè L., “Sur les méthodes nouvelles d'intégration des équations aux dérivées partielles au moyen des fonctionnelles analytiques”, Colloq. Int. C.N.R.S., 71 (1956), 47–62 | MR | Zbl
[10] Fokas A. S., “On the integrability of linear and nonlinear partial differential equations”, J. Math. Phys., 41:6 (2000), 4188–4237 | DOI | MR | Zbl
[11] Gindikin S. G., Khenkin G. M., “Integral geometry for $\bar\partial$-cohomology in $q$-linear concave domains in $\mathbf CP^n$”, Funct. Anal. Appl., 12 (1979), 247–261 | DOI | MR | Zbl | Zbl
[12] Hartshorne R., Algebraic geometry, Springer, New York, 1977 | MR | Zbl
[13] Khenkin G. M., “The method of integral representations in complex analysis”, Several complex variables. I: Introduction to complex analysis, Encycl. Math. Sci., 7, Springer, Berlin, 1990, 19–116 | DOI
[14] Henkin G. M., “The Abel–Radon transform and several complex variables”, Modern methods in complex analysis, Ann. Math. Stud., 137, Princeton Univ. Press, Princeton, NJ, 1995, 223–275 ; Preprint, Univ. Paris VI, 1993 | MR | Zbl
[15] Henkin G. M., Polyakov P. L., “Residual $\bar\partial$-cohomology and the complex Radon transform on subvarieties of $\mathbb CP^n$”, Math. Ann., 354 (2012), 497–527 | DOI | MR | Zbl
[16] Hironaka H., “Resolution of singularities of an algebraic variety over a field of characteristic zero. I”, Ann. Math., 79 (1964), 109–203 | DOI | MR | Zbl
[17] Leray J., Hyperbolic differential equations, Inst. Adv. Study, Princeton, NJ, 1953 | MR
[18] Leray J., “Le calcul differéntiel et intégral sur une variété analytique complexe”, Bull. Soc. math. France, 87 (1959), 81–180 | MR | Zbl
[19] Malgrange B., “Systèmes différentiels à coefficients constants”, Séminaire Bourbaki, 15e année: 1962/1963, W. A. Benjamin, New York, 1966, Exp. 246
[20] Martineau A., “Indicatrices des fonctionnelles analytiques et inversion de la transformée de Fourier–Borel par la transformation de Laplace”, C. r. Acad. sci. Paris, 255 (1962), 1845–1847 | MR | Zbl
[21] Martineau A., “Équations différentielles d'ordre infini”, Bull. Soc. math. France, 95 (1967), 109–154 | MR | Zbl
[22] Norguet F., “Problèmes sur les formes différentielles et les courants”, Ann. Inst. Fourier, 11 (1961), 1–82 | DOI | MR | Zbl
[23] Passare M., “Residues, currents, and their relation to ideals of holomorphic functions”, Math. scand., 62 (1988), 75–152 | MR | Zbl
[24] Penrose R., “Massless fields and sheaf cohomology”, Twistor Newsletter (Oxford), 1977, no. 5, July, 9–13
[25] Polyakov P. L., Khenkin G. M., “Homotopy formulas for the $\bar\partial$-operator on $\mathbf CP^n$ and the Radon–Penrose transform”, Math. USSR. Izv., 28 (1987), 555–587 | DOI | MR | Zbl | Zbl
[26] Rigat S., “Application of the fundamental principle to complex Cauchy problem”, Ark. Mat., 38:2 (2000), 355–380 | DOI | MR | Zbl
[27] Serre J.-P., “Un théorème de dualité”, Comment. math. Helv., 29 (1955), 9–26 | DOI | MR | Zbl
[28] Vitushkin A. G., “Remarkable facts of complex analysis”, Several complex variables, v. I, Encycl. Math. Sci., 7, Introduction to complex analysis, Springer, Berlin, 1990, 1–17 | DOI | MR
[29] Weil A., “L'intégrale de Cauchy et les fonctions de plusieurs variables”, Math. Ann., 111 (1935), 178–182 | DOI | MR | Zbl