$C^m$-subharmonic extension of Runge type from closed to open subsets of $\mathbb R^n$
Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 219-226
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider several settings for $C^m$-subharmonic extension and $C^m$-harmonic approximation problems of Runge type in Euclidean domains.
@article{TRSPY_2012_279_a13,
author = {A. Boivin and P. M. Gauthier and P. V. Paramonov},
title = {$C^m$-subharmonic extension of {Runge} type from closed to open subsets of $\mathbb R^n$},
journal = {Informatics and Automation},
pages = {219--226},
publisher = {mathdoc},
volume = {279},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a13/}
}
TY - JOUR AU - A. Boivin AU - P. M. Gauthier AU - P. V. Paramonov TI - $C^m$-subharmonic extension of Runge type from closed to open subsets of $\mathbb R^n$ JO - Informatics and Automation PY - 2012 SP - 219 EP - 226 VL - 279 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a13/ LA - en ID - TRSPY_2012_279_a13 ER -
%0 Journal Article %A A. Boivin %A P. M. Gauthier %A P. V. Paramonov %T $C^m$-subharmonic extension of Runge type from closed to open subsets of $\mathbb R^n$ %J Informatics and Automation %D 2012 %P 219-226 %V 279 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a13/ %G en %F TRSPY_2012_279_a13
A. Boivin; P. M. Gauthier; P. V. Paramonov. $C^m$-subharmonic extension of Runge type from closed to open subsets of $\mathbb R^n$. Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 219-226. http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a13/