Classification of coverings of the circle
Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 96-101

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a classification of $d$-coverings of degree $d\geq2$ of the circle $S^1$ up to conjugation by orientation-preserving homeomorphisms. We show that being equipped with a scheme, the $d$-equivalence class of an invariant countable set (distinguished set) of the linear expanding endomorphism of degree $d$ is a complete classification invariant.
@article{TRSPY_2012_278_a8,
     author = {E. V. Zhuzhoma and N. V. Isaenkova},
     title = {Classification of coverings of the circle},
     journal = {Informatics and Automation},
     pages = {96--101},
     publisher = {mathdoc},
     volume = {278},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a8/}
}
TY  - JOUR
AU  - E. V. Zhuzhoma
AU  - N. V. Isaenkova
TI  - Classification of coverings of the circle
JO  - Informatics and Automation
PY  - 2012
SP  - 96
EP  - 101
VL  - 278
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a8/
LA  - ru
ID  - TRSPY_2012_278_a8
ER  - 
%0 Journal Article
%A E. V. Zhuzhoma
%A N. V. Isaenkova
%T Classification of coverings of the circle
%J Informatics and Automation
%D 2012
%P 96-101
%V 278
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a8/
%G ru
%F TRSPY_2012_278_a8
E. V. Zhuzhoma; N. V. Isaenkova. Classification of coverings of the circle. Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 96-101. http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a8/