Classification of coverings of the circle
Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 96-101
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a classification of $d$-coverings of degree $d\geq2$ of the circle $S^1$ up to conjugation by orientation-preserving homeomorphisms. We show that being equipped with a scheme, the $d$-equivalence class of an invariant countable set (distinguished set) of the linear expanding endomorphism of degree $d$ is a complete classification invariant.
@article{TRSPY_2012_278_a8,
author = {E. V. Zhuzhoma and N. V. Isaenkova},
title = {Classification of coverings of the circle},
journal = {Informatics and Automation},
pages = {96--101},
publisher = {mathdoc},
volume = {278},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a8/}
}
E. V. Zhuzhoma; N. V. Isaenkova. Classification of coverings of the circle. Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 96-101. http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a8/