Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2012_278_a5, author = {V. M. Deundyak}, title = {Topological methods in solvability theory of multidimensional pair integral operators with homogeneous kernels of compact type}, journal = {Informatics and Automation}, pages = {59--67}, publisher = {mathdoc}, volume = {278}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a5/} }
TY - JOUR AU - V. M. Deundyak TI - Topological methods in solvability theory of multidimensional pair integral operators with homogeneous kernels of compact type JO - Informatics and Automation PY - 2012 SP - 59 EP - 67 VL - 278 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a5/ LA - ru ID - TRSPY_2012_278_a5 ER -
%0 Journal Article %A V. M. Deundyak %T Topological methods in solvability theory of multidimensional pair integral operators with homogeneous kernels of compact type %J Informatics and Automation %D 2012 %P 59-67 %V 278 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a5/ %G ru %F TRSPY_2012_278_a5
V. M. Deundyak. Topological methods in solvability theory of multidimensional pair integral operators with homogeneous kernels of compact type. Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 59-67. http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a5/
[1] Mikhailov L.G., “Novyi klass osobykh integralnykh uravnenii”, Math. Nachr., 76 (1977), 91–107 | DOI
[2] Karapetyants N.K., “O neobkhodimykh usloviyakh ogranichennosti operatora s neotritsatelnym kvaziodnorodnym yadrom”, Mat. zametki, 30:5 (1981), 787–794 | MR | Zbl
[3] Karapetiants N., Samko S., Equations with involutive operators, Birkhäuser, Boston, 2001 | MR | Zbl
[4] Avsyankin O.G., Karapetyants N.K., “Ob algebre mnogomernykh integralnykh operatorov s odnorodnymi yadrami s peremennymi koeffitsientami”, Izv. vuzov. Matematika, 2001, no. 1, 3–10 | MR | Zbl
[5] Avsyankin O.G., “Ob algebre parnykh integralnykh operatorov s odnorodnymi yadrami”, Mat. zametki, 73:4 (2003), 483–493 | DOI | MR | Zbl
[6] Avsyankin O.G., Deundyak V.M., “Ob indekse mnogomernykh integralnykh operatorov s biodnorodnymi yadrami i peremennymi koeffitsientami”, Izv. vuzov. Matematika, 2005, no. 3, 3–12 | MR | Zbl
[7] Avsyankin O.G., Deundyak V.M., “Ob algebre mnogomernykh integralnykh operatorov s odnorodnymi $SO(n)$-invariantnymi yadrami i radialno slabo ostsilliruyuschimi koeffitsientami”, Mat. zametki, 82:2 (2007), 163–176 | DOI | MR | Zbl
[8] Deundyak V.M., Stepanyuchenko E.A., “Ob integralnykh operatorakh s odnorodnymi yadrami posloino singulyarnogo tipa v prostranstve $L_p(R^2)$”, Vestn. Donsk. gos. tekhn. un-ta, 7:2 (2007), 161–168
[9] Deundyak V.M., “Mnogomernye integralnye operatory s odnorodnymi yadrami kompaktnogo tipa i multiplikativno slabo ostsilliruyuschimi koeffitsientami”, Mat. zametki, 87:5 (2010), 704–720 | DOI | MR | Zbl
[10] Deundyak V.M., Miroshnikova E.I., “Mnogomernye multiplikativnye svertki i ikh prilozheniya k teorii operatorov s odnorodnymi yadrami”, Trudy nauchnoi shkoly I.B. Simonenko, Izd-vo YuFU, Rostov-na-Donu, 2010, 67–78
[11] Pilidi V.S., Sazonov L.I., “Lokalnyi metod v teorii operatorov tipa bisingulyarnykh”, Izv. vuzov. Sev.-Kavk. reg. Estestv. nauki, 2005, Spets. vypusk: Psevdodifferentsialnye uravneniya i nekotorye problemy matematicheskoi fiziki, 100–106
[12] Deundyak V.M., “Gomotopicheskaya klassifikatsiya i vychislenie indeksa semeistv mnogomernykh bisingulyarnykh integralnykh operatorov”, Izv. vuzov. Matematika, 1996, no. 5, 34–46 | MR | Zbl
[13] Deundyak V.M., “On the index theorem for multidimensional bisingular integral operators on Hilbert modules”, J. Nat. Geom., 20 (2001), 1–20 | MR | Zbl
[14] Deundyak V.M., Simonenko I.B., “O gomotopicheskikh svoistvakh i indekse semeistv singulyarnykh i bisingulyarnykh operatorov s RS-koeffitsientami”, Sovr. matematika i ee pril., 9 (2003), 99–106 | MR
[15] Merfi Dzh., $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997
[16] Wegge-Olsen N.E., K-theory and $C^*$-algebras: A friendly approach, Oxford Univ. Press, Oxford, 1993 | MR | Zbl